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Abstract

We consider the design of platforms that facilitate trade between a single seller and a single
buyer. The most efficient mechanisms for such settings are complex and sometimes even in-
tractable, and we therefore aim to design simple mechanisms that perform approximately well.
We devise a mechanism that always guarantees at least 1/e of the optimal expected gain-from-
trade for every set of distributions (assuming monotone hazard rate of the buyer’s distribution).
Our main mechanism is extremely simple, and achieves this approximation in Bayes-Nash equi-
librium. Moreover, our mechanism approximates the optimal gain-from-trade, which is a strictly
harder task than approximating efficiency. Our main impossibility result shows that no Bayes-
Nash incentive compatible mechanism can achieve better approximation than 2/e to the optimal
gain from trade. We also bound the power of Bayes-Nash incentive compatible mechanisms for
approximating the expected efficiency.

1 Introduction

When we look at the global commerce landscape in the Internet era, we can see that most of the
products and services are sold on platforms that involve users of different roles, usually sellers and
buyers. In such environments, the “auctioneer” or the “social planner” is the platform designer
and not any one of the sellers (as in classic auction settings). For example, online ads are sold
via exchange markets where advertisers bid for ad slots and content providers seek to maximize
profit. Another example is the recent Incentive Auctions run by the US FCC [1], where spectrum
is traded between TV stations and wireless communication companies. Internet commerce giants
like Amazon and eBay are essentially large-scale platforms that mitigate trade between sellers
and buyers for a myriad of products, and Airbnb is a marketplace where travelers seek to pur-
chase accommodation from various vendors. The design of such two-sided markets brings in major
challenges for mechanism designers, and it has been the focus of a series of recent papers (e.g.,
[28, 25, 26, 11, 15, 14]).

In this paper we study the simplest two-sided market, known as the Bilateral Trade setting. In
this setting, a single seller owns an item, and can consume it and gain a value s; a single buyer
is interested in purchasing the item that can give him a value b. Since both values are private,
agreeing on a price in an incentive-compatible mechanism may be hard. Indeed, the celebrated
impossibility result by Myerson and Satterthwaite [22] claims that no Bayes-Nash incentive com-
patible mechanism can simultaneously achieve full efficiency (that is, perform a trade when b > s)
and be budget balanced (BB) and individually rational (IR).1 In situations where budget balance
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1Amechanism is budget balanced if the mechanism does not gain any profit nor requires any subsidies. A mechanism

is individually rational if the utility of each player cannot decrease by participating in the mechanism. Formal
definitions will be given later in the paper.
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and individual rationality are hard constraints, one thus have to compromise and design mecha-
nisms with approximate expected efficiency. In their original paper, Myerson and Satterthwaite
[22] characterized the “second-best” mechanism, that is, the mechanism that maximizes efficiency
subject to the BB and IR constraints. However, this second-best mechanism is often too complex
to implement, as it involves solving a set of differential equations which is a challenging task in
the bilateral-trade setting, and seems to be completely intractable when the setting is even slightly
generalized. Moreover, even if one is able to implement it, determining how well this second-best
mechanism performs, compared to the optimal (“first-best”) efficiency, is not a trivial task.

There are two standard measures that quantify the efficiency of allocations in mechanisms. The
first one is the expected efficiency (or social welfare), that is, the expected value of the player
that obtains the item. The second measure is the expected gain from trade (GFT), which is the
expected value of: b − s when a trade happens, and 0 otherwise. While the maximal efficiency
and the maximal gain-from-trade are achieved by the same allocation rule, it is clear that from
an approximation perspective approximating the GFT is a harder task. Every c approximation
to the gain-from-trade implies a c approximation to the expected efficiency, but the opposite does
not hold (this easy observation will be discussed in the sequel of the paper). For example, think
about an instance where both s and b are distributed over the support [1, 2]. Every mechanism
clearly gains efficiency of at least 1 and of at most 2, and thus every mechanism guarantees 1/2
approximation to the efficiency. However, designing a mechanism that attains 1/2 of the expected
GFT is completely non trivial. Approximating the GFT is a notoriously hard analytical problem,
and in this paper we devise simple mechanisms that approximate this objective function.

1.1 Our results

A series of recent works compared the power of simple mechanisms and optimal (yet complex)
mechanisms (e.g., [7, 19, 6, 17, 12, 8, 2, 24]). most of these results consider simple mechanisms
that are dominant-strategy incentive compatible (DSIC). For the bilateral-trade problem, however,
it was shown by Blumrosen and Dobzinski [5] that no DSIC mechanism can guarantee any constant
approximation to the expected GFT. The weakness of DSIC mechanisms relates to the fact that
they are essentially restricted to posting a single price to the agents, where this price cannot depend
on the actual bids of the agents. In this paper, we devise a mechanism that achieves approximate
efficiency in Bayes-Nash incentive compatibility (BNIC). This follows a recent line of research,
mostly for combinatorial auction settings, that compared the power of simple BNIC mechanism to
optimal outcomes (see, e.g., [9, 3, 27]). Our main result in this paper is a mechanism with extremely
simple rules in which simple Bayes-Nash equilibrium strategies obtain a constant approximation
ratio. This mechanism circumvents the DSIC limitations, and the final price may depend on the
seller’s value. More precisely, this mechanism admits a unique Bayes-Nash equilibrium with at
least 1/e of the optimal (“first-best”) GFT whenever the distribution of the buyer’s value satisfies
the monotone hazard rate (MHR) property (with no restrictions on the seller’s distribution). We
stress that, as we observe later in the paper, no DSIC mechanism can approximate the GFT even
for distributions that satisfy the MHR condition.

Theorem 1: When the distribution of the buyer’s value satisfies the monotone hazard rate condi-
tion, there is a “simple” Bayes-Nash incentive-compatible, individually-rational and budget-balanced
mechanism which always achieves at least a 1

e -fraction of the optimal expected gain from trade.

In this mechanism, the seller offers a take-it-or-leave-it price to the buyer, who then decides
whether to accept it or not.2 This mechanism is simple in several ways: first, the mechanism

2We note that our mechanism satisfies two stronger and desired versions of the above economic properties: it is
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designer needs no distributional knowledge. The seller does need to know the distribution of
the buyer in order to compute his optimal offer, but the buyer’s strategy does not involve any
distributional considerations. The computation required from the seller for computing her optimal
offer is as complex as determining the monopoly price in the presence of a single buyer, which is
known to have a simple closed-from formula and can be computed easily even in practical settings
(e.g., [23]).

We note that this approximation result also implies the same approximation factor for the
“second-best” mechanism.3 That is, it follows that the expected gain-from-trade in the optimal
BNIC mechanism cannot fall below a 1/e fraction of the optimal (first-best) gain-from-trade. Fur-
thermore, the theorem demonstrates how this bound can be achieved even by simple, more practical,
mechanisms.

We strengthen this approximation result in two respects. We first prove that the approximation
ratio achieved by the mechanism is actually 1+c

e , where c ∈ [0, 1] is a constant that depends on the
buyer’s distribution (and more specifically, on the steepness of the virtual valuation function); for
example, for the uniform distribution c = 0.5, so the approximation bound in this case is actually
1.5
e

∼= 0.55. We then prove that given a stronger condition on the buyer’s distribution, namely, that
the hazard-rate is concave, we can significantly improve the approximation bound for the GFT
to 2/e ∼= 0.74.4 We give an example for an MHR distribution with a non-concave hazard rate,
for which the approximation achieved by our mechanism is strictly worse than 2/e; therefore, the
concavity assumption is necessary for the analysis of our mechanism.

Our main impossibility result in this paper shows that no Bayes-Nash incentive compatible
mechanism can guarantee an approximation ratio better than 2/e.

Theorem 2: There is no Bayes-Nash incentive compatible, individually rational5 and budget
balanced mechanism that guarantees a 2

e -fraction of the optimal expected gain from trade. Moreover,
this holds even when both distributions admit the MHR property.

Unlike the impossibility results for DSIC mechanisms ([4, 10]), there is no simple character-
ization for BNIC mechanisms; therefore, our proof relies on solving the complex “second-best”
mechanism by [22] for carefully chosen distributions, and analyze its equilibrium properties. The
buyer’s distribution for which the bound is proven admits concave hazard rate, so this bound
matches the above 2/e bound for this family of distributions.

Our final impossibility result bounds the power of BNIC mechanisms for approximating the
expected efficiency (all the results described so far concerned approximating gains-from-trade). We
show that no BNIC mechanism can guarantee better than a 0.93-approximation to the optimal
efficiency. Although this bound appears to be weak compared to the other impossibility results,
this is the strongest impossibility result for BNIC mechanisms that we are aware of. We know
[5] that there are BNIC mechanisms (actually, even DSIC mechanisms) that achieve a 1 − 1/e
approximation to the optimal efficiency. This leaves a considerable gap for BNIC mechanisms
between 0.63 and 0.93.

strongly budget balanced, i.e., the sum of payments is always exactly zero; it is also ex-post individually rational, i.e.,
agents cannot lose in every instance and not only in expectation.

3Note that the characterization of the “second-best” mechanism by [22] requires that both agents have Myerson-
regular distributions, while we require the stronger MHR assumption for the buyer and require nothing for the
seller.

4Concavity of the hazard rate is satisfied by some standard distributions (e.g., exponential, Weibull(2,1), etc.),
and does not hold for some other distributions (e.g, uniform on [0, 1]).

5This result considers the weaker version of interim IR, which makes the proof only harder.
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1.2 More Related Work

McAfee [19] studied a similar problem to ours, i.e., how simple mechanisms can approximate the
gain-from-trade in bilateral-trade settings. He proved that half of the expected gain from trade
can be achieved via a DSIC mechanism for settings where the median of the buyer distribution
is greater than the median of the seller’s distribution. The mechanism simply posts any price
between the medians as a take-it-or-leave-it offer to both agents. As mentioned, this bound cannot
be generalized with DSIC mechanisms for general distributions [5], or even to MHR distributions.
We overcome this impossibility by relaxing the incentive constraints from DSIC to BNIC. The
Bilateral Trade problem for non quasi-linear settings was recently studied in [16].

Blumrosen and Dobzinski [4, 5] designed simple DSIC mechanisms that approximate the ex-
pected efficiency for Bilateral trade and more complex settings. [4, 5] were inspired by McAfee’s
work and used the medians of the distributions as a major design tool. [4, 5] showed how features
that are used in mechanisms for Bilateral Trade can be used in more general exchange frameworks,
and even constructed black-box reductions from other settings to Bilateral Trade. This highlights
the importance of understanding the basic bilateral-trade problem for the design of more complex
markets. Colini-Baldeschi et al. [10] further studied approximation mechanisms in exchange set-
tings under strong budget balance, and proved, among other results, an impossibility result of 0.749
for the efficiency approximation obtained by DSIC mechanisms in the bilateral trade problem.

Two-sided markets have been extensively studied in the last three decades. McAfee [18] designed
an elegant DSIC, BB and IR mechanism for two sided markets with homogenous goods, which is
nearly efficient in large markets. Other work about asymptotic efficiency of two-sided markets
include [25, 26, 11, 15]. Dutting et al. [14] developed a modular approach for the design of two-
sided markets, based on the deferred-acceptance heuristics from [20].

We continue as follows: We present the model and a a brief survey of some relevant existing
results in Section 2. Our main positive results are given in Section 3, and our negative results
appear in Section 4.

2 Model

The bilateral trade problem involves two agents, a seller and a buyer. The seller owns one indivisible
item from which he gains a value s. The buyer gains a value b from the same item after purchasing
it. In fact, s and b are drawn from two independent distributions Fs and Fb which correspond to the
two random variables S and B respectively. Each of the two agents does not know the realization
of the other agent’s value, but the distributions are public knowledge. In our analysis we shall
assume the existence of the density functions fs and fb for the seller and the buyer respectively.
Furthermore, we assume that both agents are risk neutral and that the prices and values are
commensurable.

Based on their values, the seller and the buyer simultaneously report their bids, denoted by
σ (s) and β (b) respectively, to the trading mechanism. The mechanism is defined by the two
functions t (β, σ) and p (β, σ), both known to the agents, such that the item is transferred from the
seller to the buyer at price t (β, σ) with probability p (β, σ). We will be focusing on deterministic
mechanisms, such that the item is transferred iff p (β, σ) = 1.

As previously mentioned, the two main measures that will be analyzed throughout this paper
are the expected gains from trade and the expected efficiency. Given a mechanism M = ⟨t, p⟩ and
two agents with distributions Fb and Fs, these two measures, denoted by GFTFb,Fs

M and EFFFb,Fs

M
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respectively, are defined as follows (when they are clear, the notations M,Fs or Fb are omitted):

GFTFb,Fs

M = E[(B − S) · p (β (B) , σ (S))]

EFFFb,Fs

M = E[B · p (β (B) , σ (S)) + S · (1− p (β (B) , σ (S)))]

From these definitions it becomes clear that EFFFb,Fs

M = GFTFb,Fs

M + E[S]. In the fully efficient

case (i.e., when p (β (b) , σ (s)) = 1 iff b ≥ s), the measures are GFTFb,Fs

OPT = E[max{B − S, 0}] and
EFFFb,Fs

OPT = E[max{B,S}]. We note that, by definition, maximizing GFT also implies maximizing
efficiency. The fully efficient allocation is our benchmark for our approximation results; we say that
for a pair of such distributions, a mechanism M achieves a k-approximation to the optimal GFT if
GFT

Fb,Fs
M

GFT
Fb,Fs
OPT

≥ k and similarly for EFF , and we note that it always holds that
EFF

Fb,Fs
M

EFF
Fb,Fs
OPT

≥ GFT
Fb,Fs
M

GFT
Fb,Fs
OPT

.6

We proceed with further preliminaries needed for our main results.

2.1 The Hazard Rate of a Distribution

We now present some definitions, properties and notations regarding the Hazard Rate of a gen-
eral distribution F with density f that has a non-negative support. These are used in our main
approximation results in the next section.

We begin by defining the Hazard Rate of such distribution by h (x) = f(x)
1−F (x) . The Cumulative

Hazard Function of F is defined by H (x) = −ln (1− F (x)) for every x ≥ 0 (which is not to the
right of F ’s support). We note that e−H(x) = 1− F (x), and that H (0) = 0. Differentiating yields
H ′ (x) = h (x), and we get that H (x) =

∫ x
0 h (t) dt+ k for some k. Placing x = 0 shows that k = 0.

We continue by defining the Virtual Valuation Function of an agent with such distribution by
φ (x) = x− 1−F (x)

f(x) .

Moreover, we also define the Monotone Hazard Rate (MHR) property of a distribution, which
simply states that h is monotone non-decreasing. This property also implies that φ is monotone
increasing, a state in which we often call F a regular distribution7. We note that in this case, since
φ is strictly monotone, its inverse function exists.

In this paper, we only require such hazard rate assumptions for the buyer’s distribution, and
therefore when we use these notations they shall be associated with Fb.

2.2 Bayes-Nash IC: The Second-Best Mechanism

While it was proved in [22] that no IR and BB mechanism is fully efficient in BNIC, the same
paper present a characterization of the mechanisms that maximize GFT subject to the IR and BB
constraints. We will now describe this “second-best” mechanism for bilateral trade from [22], which
is used later in our inapproximability results.

As stated [22], in order to derive the correct approximation results using this mechanism, we
need to assume that the support of Fb is [b, b] or [b,∞) for some b ≥ b ≥ 0 and that the support
of Fs is [s, s] or [s,∞) for some s ≥ s ≥ 0. As in [22], we assume regularity of the distributions,

i.e., that the functions b− 1−Fb(b)
fb(b)

and s+ Fs(s)
fs(s)

are monotone increasing. Using the fact that this

6This follows from EFFM · GFTOPT ≥ GFTM · EFFOPT which is equivalent by definition to the inequality
(GFTM + E[S]) ·GFTOPT ≥ GFTM · (GFTOPT + E[S]) that holds by GFTOPT ≥ GFTM .

7Most of the literature assumes a weaker condition, that the φ is non-decreasing. In our paper we often use the
inverse function of φ, and the notations become much simpler when φ is strictly increasing. Moreover, our main
results consider MHR distributions that imply that φ is always strictly increasing.
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mechanism is truthful, i.e., in a Bayes-Nash equilibrium β (b) = b and σ (s) = s, the mechanism is
defined by:

pα (β (b) , σ (s)) =

{
1 if s+ α · Fs(s)

fs(s)
≤ b− α · 1−Fb(b)

fb(b)

0 otherwise.

The appropriate parameter is the unique (as proved in [22]) α ∈ (0, 1] that solves the following
equation, presented for the bounded supports case (and similar for the unbounded case):

b∫
b

s∫
s

((
b− 1− Fb (b)

fb (b)

)
−
(
s+

Fs (s)

fs (s)

))
· pα (b, s) fb (b) fs (s) dsdb = 0

The appropriate payment function can be determined ad hoc, given the distributions. Nonetheless,
we note that it is not necessary in order to analyze the GFT and EFF measures.

Finally, we denote this mechanism by the shorthand MS.

3 A Constant Approximation for the Gains from Trade

In this section we present a simple mechanism that approximates the optimal gains from trade
for bilateral trade settings. The mechanism has no dominant-strategy equilibrium, and the results
are achieved in Bayes-Nash equilibrium. We now define this mechanism, we call Seller-Offering
Mechanism (abbreviated as SO).

The Seller-Offering (SO) mechanism:

• The seller offers a take-it-or-leave-it price t to the buyer, who chooses whether to accept it
or not.

• If the buyer accepts the price, a trade occurs at price t. Otherwise, no trade occurs and no
payments are transferred.

We note that at first glance, it seems as if this mechanism does not fall into formal model of
bilateral trade mechanisms we defined earlier, since it is two-staged and not simultaneous. However,
using p (β, σ) = 1{β≥σ} (β, σ) and t (β, σ) = σ in the original scheme yields the same results.

3.1 Some Technical Definitions and Observations

For our results in this section, it suffices to assume that the support of Fb is [b, b] or [b,∞) for some
b ≥ 0, the support of Fs is contained in [0,∞), fb is differentiable and Fb adheres to the MHR
assumption.

The inverse virtual valuation φ−1 (·) turns out to be very useful in our analysis. This inverse
function is not well defined for all possible values, therefore we frequently use its extension denoted
by φ−1 (·).

Definition 3.1. Under the aforementioned assumptions, we define the Extended Inverse Virtual
Valuation Function, φ−1 (x), to be the continuous extension of φ−1 (x):
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Since φ (x) is increasing, φ−1 (x) is undefined for x ≤ φ (b), and in case Fb’s support is [b, b], it is
also undefined for x ≥ φ

(
b
)
= b. The left part is extended using φ−1 (x) = b and the right part

using φ−1 (x) = x.8

We continue by showing some useful technical observations regarding these functions, used later
in our proofs:

Observation 3.2. For every x in their domain, it holds that φ (x) ≤ x and φ−1 (x) ≥ x.

Proof. The first inequality follows from φ (x) = x− 1
h(x) ≤ x since h is positive. The second follows

from the fact that φ−1 is the reflection of φ with respect to the line y=x, and since the extension
of it preserves the inequality.

Observation 3.3. For every x ≥ φ (b):

1. If b ≥ x then φ−1 (x)− x =
1−Fb(φ−1(x))
fb(φ−1(x))

= 1
h(φ−1(x))

.

2. If b ≤ x then φ−1 (x)− x = 0.

Proof. For the first case, it holds that φ−1 (x) − x = φ−1 (x) − φ
(
φ−1 (x)

)
= φ−1 (x) − φ−1 (x) +

1−Fb(φ−1(x))
fb(φ−1(x))

=
1−Fb(φ−1(x))
fb(φ−1(x))

= 1
h(φ−1(x))

by the definitions of φ and h. For the second case, by the

definition of the right extension of φ−1, it holds that φ−1 (x)− x = x− x = 0.

Observation 3.4. For every b ≥ x ≥ φ (b) it holds that dφ−1(x)
dx = 1

1+
h′(φ−1(x))

(h(φ−1(x)))2

∈ [0, 1] under the

MHR assumption.

Proof. We remind that φ (x) = x − 1
h(x) . By the reciprocal rule, differentiating yields φ′ (x) =

1− 0−h′(x)

(h(x))2
= 1+ h′(x)

(h(x))2
. Furthermore, dφ−1(x)

dx = 1
φ′(φ−1(x))

by the derivative of an inverse function.

Thus, the identity follows by plugging φ−1 (x) in the derviative. We also note that by the MHR

assumption,
h′(φ−1(x))
(h(φ−1(x)))2

≥ 0, hence dφ−1(x)
dx ∈ [0, 1].

3.2 Analysis of the Seller-Offering Mechanism

Although not admitting a dominant-strategy equilibrium, the above Seller-Offering mechanism
induces quite straightforward Bayes-Nash equilibrium strategies for the agents. In equilibrium, the
seller offers the monopoly price given his own value for the item, that is, φ−1 (s) (as in [21]), and
the bidder will simply bid truthfully to accept the deal if its value exceeds the offered price.9 This
is an immediate application of Myerson’s theory ([21]), but for completeness, a proof is given in
Appendix A.1.

Proposition 3.5. For every MHR distribution Fb for the buyer and every distribution Fs for the
seller, the bids β (b) = b and σ (s) = φ−1 (s) form a Bayes-Nash equilibrium in the Seller-Offering
Mechanism.

8We note that φ−1 (x) is defined for every x, even when Fb’s support is [b,∞), since φ (x) is unbounded from
above in that case. This can be seen by noticing that for every y ∈ R, choosing x > max{ 1

h(b)
+ y + 1, b} yields

φ (x) = x− 1
h(x)

≥ 1
h(b)

+ y + 1− 1
h(b)

> y by the MHR assumption.
9Recall that φ denotes the virtual valuation of the buyer, and the seller use the details of this distribution to

determine what price to post.
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In the following lemma we present a convenient representation of GFTOPT and GFTSO which
will be used in the main theorems. The representation of GFTOPT is also shown in [19]. We prove
this lemma in Appendix A.2.

Lemma 3.6. For every MHR distribution Fb for the buyer and every distribution Fs for the seller,
the following equalities hold:

GFTOPT =

∞∫
0

Fs (s) · (1− Fb (s)) ds

GFTSO =

∞∫
0

Fs (s) ·

(
1 +

dφ−1 (s)

ds

)
· (1− Fb(φ−1(s)))ds

We now turn to proving the main result of the paper, concerning the constant approximation
guarantee obtained using the Seller-Offering mechanism. This approximation result is parameter-
ized by a parameter c that describes the steepness of the buyer’s virtual function.

Definition 3.7. We define the Virtual Steepness Constant of an MHR distribution F with a dif-

ferentiable density f by c = mins
dφ−1(s)

ds . We note that c is in fact the reciprocal of the virtual

valuation function’s Lipschitz constant, since mins
dφ−1(s)

ds = mins
1

φ′(φ−1(s))
= 1

maxsφ′(s) .

Our theorem shows that given the MHR condition on the buyer’s valuation, our mechanism
attains a 1+c

e fraction of the optimal gains-from-trade. Since by Observation 3.4 we have that
c ∈ [0, 1], this approximation is at least 1

e for all possible distributions.

Theorem 3.8. For every MHR distribution Fb for the buyer and every distribution Fs for the
seller, the Seller-Offering Mechanism obtains a 1+c

e -approximation to the optimal gains from trade.

Proof. We remind that in Lemma 3.6, we concluded that GFTOPT =
∫∞
0 Fs (s) · (1− Fb (s)) ds

and that GFTSO =
∫∞
0 Fs(s) · (1 + dφ−1(s)

ds ) · (1− Fb(φ−1(s)))ds. We therefore analyze the relation

between (1 + dφ−1(s)
ds ) · (1− Fb(φ−1(s))) and (1− Fb(s)) for every s ≥ 0.

If s ≥ b, both terms are 0 (we use Observation 3.2 for the first term). If s ≤ φ(b) then

(1 + dφ−1(s)
ds ) · (1− Fb(φ−1(s))) = (1 + 0) · (1− Fb(b)) = 1 = (1− Fb(s)). The first equality follows

from φ−1(s) = b for such s, and the last equality follows from b ≥ φ(b) as noted in Observation
3.2. The ratio between these two terms is 1, which is greater than 1+c

e .

We now focus on the case where b ≥ s ≥ max{0, φ(b)}, such that φ−1(s) = φ−1(s), and we
show that e · (1−Fb(φ−1(s))) ≥ 1−Fb(s). The Cumulative Hazard Function H of the buyer is the
integral of the monotone increasing function h, hence H is convex. Therefore, the line tangent to
H at any point is below the function. In other words, fixing x0 ∈ [0, b], for every x ∈ [0, b] it holds
that H(x) ≥ H(x0) + h(x0) · (x − x0). By Observation 3.3, choosing x0 = φ−1(s) we get that for
every x ∈ [0, b], and specifically x = s, it holds that:

H(x) ≥ H(φ−1(x)) + h(φ−1(x)) · (x− φ−1(x)) =

= H(φ−1(x)) + h(φ−1(x)) ·
(
− 1

h(φ−1(x))

)
= H(φ−1(x))− 1

Hence:
1− Fb(s) = e−H(s) ≤ e−H(φ−1(s))+1 = e · e−H(φ−1(s)) = e · (1− Fb(φ−1(s)))

8



The first and the last equalities in the last line follow from the definition of H as described in
Section 2.1.

Concluding, we get that for every s ≥ 0 it holds that

Fs(s) · (1 +
dφ−1(s)

ds
) · (1− Fb(φ−1(s))) ≥ Fs(s) ·

1 + c

e
· (1− Fb(s))

Integrating both parts and by the monotonicity of the integral, we get that by Lemma 3.6

GFTSO ≥ 1 + c

e
·GFTOPT

.

We now proceed to proving an amplified version of this theorem. In the proof of Theorem 3.8
we relied on a linear approximation of H. The next theorem utilizes a quadratic approximation of
H (via the Taylor expansion) to improve the bound, but requires an additional assumption, the
concavity of h. With this additional assumption, the approximation can be improved to 2/e.

The following technical lemma, which is proved in Appendix A.3, manifests the importance of
the concavity assumption.

Lemma 3.9. Let f be a twice differentiable function that has a concave derivative, and let T (x)
be a second degree Taylor polynomial at x0, i.e., a quadratic approximation at this point. Then for
every x ≤ x0 it holds that T (x) ≤ f (x).

Theorem 3.10. For every MHR distribution Fb with a concave hazard rate for the buyer and
every distribution Fs for the seller, the Seller-Offering Mechanism obtains a 2

e -approximation to
the optimal gains from trade.

Proof. We first note that since h is concave, it must hold that that b = 0.10

Now, let s ∈ [0, b]. By our assumptions, H is twice differentiable and the derivative of H is
concave, thus by Lemma 3.9, if we take the second degree Taylor polynomial T (x) (instead of the
linear approximation as in Theorem 3.8) in x0 = φ−1 (s) (which is defined since b = 0), for every
x ∈ [0, x0], and specifically x = s, due to similar considerations used in Theorem 3.8:

H (s) ≥ T (s)

= H
(
φ−1 (s)

)
+ h

(
φ−1 (s)

)
·
(
s− φ−1 (s)

)
+

1

2
· h′
(
φ−1 (s)

)
·
(
s− φ−1 (s)

)2
= H

(
φ−1 (s)

)
− 1 +

1

2
·

h′
(
φ−1 (s)

)
(h (φ−1 (s)))2

This time, as we deduced in Theorem 3.8, we get that:

1− Fb(s) ≤ e · (1− Fb(φ−1(s))) · e−
1
2
· h′(φ−1(s))

(h(φ−1(s)))2

10If b > 0, the line connecting the points
(
1
2
b, h

(
1
2
b
))

=
(
1
2
b, 0

)
and (b, h (b)) = (b, f (b)) on the graph of h is above

the point
(
3
4
b, h

(
3
4
b
))

=
(
3
4
b, 0

)
contradicting h’s concavity. For the sake of clearness we focus on this assumption,

but inspecting the details of this proof shows that it can be generalized to the case where h is concave only in the
union of Fb’s and Fs’s supports except the part which is greater than b.
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Therefore, it suffices to show that
(
1 + dφ−1(s)

ds

)
· e

1
2
·

h′(φ−1(s))
(h(φ−1(s)))2 ≥ 2. We remind that φ−1 (s) =

φ−1 (s) for such s and that by Observation 3.4, it holds that dφ−1(s)
ds = 1

1+
h′(φ−1(s))

(h(φ−1(s)))2

. Hence,

denoting x = h′
(
φ−1 (s)

)
and y = h

(
φ−1 (s)

)
:(

1 +
dφ−1 (s)

ds

)
· e

1
2
·

h′(φ−1(s))
(h(φ−1(s)))2 ≥

(
1 +

1

1 + x
y2

)
·
(
1 +

1

2
· x

y2

)
=

2y2 + x

y2 + x
· 2y

2 + x

2y2

≥
(
2y2 + x

)2
(y2 + x) · 2y2 + 0.5x2

= 2

In the first inequality we used the fact that ex ≥ 1 + x for every x.
It follows that for every s ∈ [0, b] it holds that

Fs(s) · (1 +
dφ−1(s)

ds
) · (1− Fb(φ−1(s))) ≥ Fs(s) ·

2

e
· (1− Fb(s))

, while for s ≥ b both terms are 0. Integrating both parts, by the monotonicity of the integral, and
by Lemma 3.6, we get that GFTSO ≥ 2

e ·GFTOPT .

We can now use Theorem 3.10 to separate the power of DSIC and BNIC mechanisms in terms
of approximating the gains from trade. The following proposition shows that there are instances
where no DSIC mechanism can obtain a constant approximation to the gains from trade, but as
the relevant distributions satisfy MHR and admit a concave hazard function, Theorem 3.10 implies
the existence of BNIC mechanisms with 2

e approximation.

Proposition 3.11. There exists a pair of distributions Fb for the buyer and Fs for the seller, for
which no DSIC mechanism that is IR and BB can achieve a constant approximation to the optimal
gains from trade, while there exists a BNIC mechanism that is IR and BB that does achieve a
2/e-approximation to the optimal gains from trade for them.

Proof. Consider the two distributions Fb ∼ Exponential (1) and Fs (x) = λ
(
ex−t − e−t

)
with

λ = 1
1−e−t on the support [0, t]. In [5], Blumrosen and Dobzinski analyze the scenario in which

Fb (x) = λ (1− e−x) on the support [0, t] and Fs is the same as above. They show that every fixed
price mechanism achieves at most O (1/t)-approximation to the optimal gains from trade in this
case. By taking t that tends to infinity, this buyer’s distribution converges to Exponential(1) while
1/t converges to 0. Alternatively, a direct calculation using the original distributions yields these
results. Since it is well known that every DSIC mechanism that is IR and BB is a fixed price
mechanism (see, e.g., [13, 10] and the references therein), the first part follows.

We note that in this case, h (x) = 1 which is a constant function and therefore the MHR and
concavity assumptions hold. Thus, by Theorem 3.10 the Seller-Offering Mechanism indeed obtains
a 2/e-approximation to the optimal gains from trade.

Lastly, the following proposition signifies the necessity of h’s concavity assumption for Theorem
3.10. We also show that the analysis of Theorem 3.10 is tight, and for some distributions (that
satisfy MHR and concave hazard rate) our mechanism achieves exactly 2/e approximation. A proof
can be found in Appendix A.4.
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Proposition 3.12. Using the Seller-Offering Mechanism:

1. There exists an MHR distribution Fb with a non-concave hazard rate, and a distribution Fs

for the seller, such that the mechanism achieves an approximation to the optimal GFT which
is strictly worse than 2/e.

2. There exists an MHR distribution Fb with a concave hazard rate h and a distribution Fs for
the seller, such that h is concave and GFTSO

GFTOPT
= 2

e .

4 Inapproximability Results

In this section, we present impossibility results for approximating the gains from trade and efficiency
using BNIC mechanism.

In the previous section, we presented an IR, BB and BNIC mechanism that guarantees a 1/e-
approximation to the optimal gains from trade for any pair of distributions under standard MHR
assumptions. A question that naturally arises concerns the limitations of BNIC mechanisms in this
our setting. The following theorem addresses that question and shows that no BNIC mechanism
can maintain IR and BB and guarantee more than 2/e approximation. Moreover, this holds even
when the distributions satisfy the MHR condition.11 We also note that this result is proven for
the case where the buyer’s distribution has concave hazard rate, and thus it matches the positive
result in Theorem 3.10 when this condition is satisfied.

Theorem 4.1. No BNIC mechanism which is IR and BB can guarantee an approximation to the
optimal gains from trade which is better than 2/e. This holds even if both distributions satisfy the
MHR condition.

Proof. The proof relies on the Second-Best mechanism devised by Myerson and Satterthwaite in
[22]. We show that for every ϵ > 0 there exists a pair of distributions such that GFTMS

GFTOPT
< 2

e + ϵ.
Since by its definition, no BNIC mechanism which is IR and BB can achieve a better approximation
than this mechanism for these distributions, the claim follows. In fact, the relevant distributions are
exactly the ones used in Proposition 3.11, i.e., Fb ∼ Exponential (1) and Fs (x) = λ

(
ex−t − e−t

)
with λ = 1

1−e−t on the support [0, t]. The distributions satisfy the MHR property. We remind that

the second-best solution requires that b− 1−Fb(b)
fb(b)

and s+ Fs(s)
fs(s)

are monotone increasing, and indeed

this property holds for b− 1−Fb(b)
fb(b)

= b− 1 and s+ Fs(s)
fs(s)

= s+ 1− e−s.
As noted in Section 2, trade occurs whenever:

b− s ≥ α ·
(
Fs (s)

fs (s)
+

1− Fb (b)

fb (b)

)
= α ·

(
1− e−s + 1

)
⇔ b ≥ s+ α ·

(
2− e−s

)
In that section, we also mentioned that the proper α is the one that solves:∫ t

0

∫ ∞

s+α·(2−e−s)

(
(b− s)−

(
2− e−s

))
· e−b · es−t

1− e−t
dbds = 0

We now show that α∗ (t) −→
t→∞

1
2 . One can verify that the last term tends to 0 as t tends to

infinity. Thus, to find the proper α we instead seek for α = α∗ (t) for which it holds that:∫ t
0

∫∞
s+α·(2−e−s) (b− s) · e−b · es−t

1−e−tdbds∫ t
0

∫∞
s+α·(2−e−s) (2− e−s) · e−b · es−t

1−e−tdbds
−→
t→∞

1

11This theorem holds for a weaker notion of interim individual rationality (as in [22]); This clearly strengthens the
result.
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Elementary integration shows that:∫ ∞

s+α·(2−e−s)
(b− s) · e−b · es−t

1− e−t
db =

e−(s+α(2−e−s)) ((1 + 2α) es − α)

et − 1

and that: ∫ ∞

s+α·(2−e−s)

(
2− e−s

)
· e−b · es−t

1− e−t
db =

e−(s+α(2−e−s)) (2es − 1)

et − 1

Calculating the reduced integrals, for the numerator it holds that:

Numerator (α, t) ·
(
et − 1

)
=

∫ t

0
e−(s+α(2−e−s)) ((1 + 2α) es − α) ds =︸︷︷︸

x=es

=

∫ et

1

e−2α+α
x ((1 + 2α)x− α)

x2
dx =

= e−2α ·

(
(1 + 2α)

∫ et

1

e
α
x

x
dx− α

∫ et

1

e
α
x

x2
dx

)
=︸︷︷︸

t=α
x

= e−2α ·

(
(1 + 2α)

∫ et

1

e
α
x

x
dx+ α · 1

α

∫ α/et

α
etdt

)
=

= e−2α ·

(
(1 + 2α)

∫ et

1

e
α
x

x
dx+

(
e

α
et − eα

))
While for the denominator it holds that:

Denominator (α, t) ·
(
et − 1

)
=

∫ t

0
e−(s+α(2−e−s)) (2es − 1) ds =︸︷︷︸

x=es

=

∫ et

1

e−2α+α
x (2x− 1)

x2
dx =

= e−2α ·

(
2

∫ et

1

e
α
x

x
dx−

∫ et

1

e
α
x

x2
dx

)
=

= e−2α ·

(
2

∫ et

1

e
α
x

x
dx+

1

α

(
e

α
et − eα

))

If we denote q (α, t) =
∫ et

1
e
α
x

x dx, since q (α, t) ≥
∫ t
1

1
xdx, by the comparison test it follows that

q (α, t) −→
t→∞

∞.

Thus, assuming α∗ (t) −→
t→∞

x (we see this assumption holds by the next consideration), we get that

this ratio equals:

∫ t
0

e
−(s+α∗(t)(2−e−s))((1+2α∗(t))es−α∗(t))

et−1 ds∫ t
0

e−(s+α∗(t)(2−e−s))(2es−1)
et−1 ds

=

(1 + 2α∗ (t)) · q (α∗ (t) , t) +

(
e

α∗(t)
et − eα

∗(t)

)
2 · q (α∗ (t) , t) + 1

α∗(t)

(
e

α∗(t)
et − eα∗(t)

) =

= α∗ (t) +
α∗ (t) · q (α∗ (t) , t)

2α∗ (t) · q (α∗ (t) , t) + e
α∗(t)
et − eα∗(t)

−→
t→∞

x+
1

2

12



By the definition of α ∈ (0, 1], we conclude that α∗ (t) −→
t→∞

x = 1
2 . We also note that GFTMS (t) =

Numerator (α∗ (t) , t), and evaluating GFTOPT (t) by elementary integration:

GFTOPT (t) =

∫ t

0

∫ ∞

s
(b− s) · 1 · e−1·b · es−t

1− e−t
dbds =

t

et − 1

We therefore conclude that:

GFTMS(t)

GFTOPT (t)
= e−2α∗(t)(1+2α∗(t))· q(α

∗(t), t)

t
+
e−2α∗(t)(e

α∗(t)
et − eα

∗(t))

t
−→
t→∞

e−2·0.5(1+2·0.5)·1 =
2

e

For evaluating the first term, we used the fact that q (0, t) ≤ q (α∗ (t) , t) ≤ q (1, t). For every

β, it holds that ∂q(β,t)
∂t = et ·

(
eβe

−t
/et
)
= eβe

−t
, so by L’Hopital’s rule we conclude that q(α∗(t),t)

t

tends to 1 as t tends to infinity.

We conclude by showing a similar result for the expected efficiency in the bilateral trade setting.
As the previous proof illustrates, and as supported by simulations using various distributions, the
Second-Best mechanism achieves a relatively low approximation to the optimal GFT when the
buyer’s values tend to be low and the seller’s values tend to be high. Since this is normally associated
with low expected gains from trade, and since EFF = GFT +E[S], these scenarios often produce
high approximation to the optimal efficiency. Thus, it seems that tackling the question of finding
an approximation to that measure that cannot be guaranteed requires observing somewhat more
balanced scenarios.

We remark that [10] studied this question for the DSIC case, and showed that no DSIC mech-
anism which is IR and BB can guarantee a 0.749-approximation to the optimal efficiency. The
following theorem shows a similar result for the general case of BNIC mechanisms, and is proved in
Appendix 4.2. While this bound appears to be weak compared to the bound on the GFT in Theo-
rem 4.1, we are not aware of any stronger bound for this problem. The best positive result to date
for this problem is by [5], which show a DSIC (and thus also BNIC) mechanism that guarantees
about 0.63 fraction of the optimal efficiency.

Theorem 4.2. No BNIC mechanism which is IR and BB can guarantee an approximation to the
optimal efficiency which is better than 0.934.

5 Conclusion

This paper considers the bilateral-trade problem, which is a fundamental problem in economics for
more than three decades and it demonstrates the simplest form of two sided markets. We hope
that developing understanding of this fundamental problem may also be helpful in the design of
more general two sided markets.

Our main result is a mechanism that achieves at least 1/e fraction of the optimal gain from trade,
assuming that the distribution of the buyer satisfies MHR. The mechanism is simple, Bayes-Nash
incentive compatible, strongly budget balanced and ex-post individually rational. The bound also
implies that the most efficient mechanism subject to the IR and BB, which was characterized in the
seminal paper of [22], must also achieve at least the same fraction of the optimal gain-from-trade.
Our main impossibility result shows that no BNIC mechanism can guarantee an approximation
which is better than 2/e.
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The main open question that is raised in this paper is whether the MHR assumption (on the
buyer’s side) is really required for achieving a constant approximation to the gain from trade via
BNIC mechanisms. In other words, is there a BNIC, IR and BB mechanism that guarantees a
constant approximation to the gain from trade for all distributions? We note that Myerson and
Satterthwaite’s [22] characterization of the “second-best” mechanism was not general, and assumed
that the distributions are regular (a slightly weaker assumption than MHR).

A second interesting open question concerns closing the relatively-wide gap between the lower
and the upper bound for the efficiency-maximizing problem by DSIC mechanisms. The best cur-
rently known approximation for this problem is 0.63 ([5]), while our impossibility result gives a
bound of 0.93. As these results are given for Bayes-Nash incentive compatible mechanisms, the
analysis can be challenging.
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A Missing proofs from Section 3

A.1 Equilibrium in the Seller-Offering Mechanism

Proof of Proposition 3.5:

Proof. Clearly, truthful bidding is the dominant strategy of the buyer, since by bidding higher than
his value, he does not affect the eventual payment, but might end up having a negative surplus.
Similarly, by bidding less than his value, he does not affect the eventual payment, but might miss
a profitable trade.
As for the seller, assuming the buyer bids truthfully, the expected surplus of the seller is:

R (σ) = (σ − s) · P (σ ≥ β (B)) = (σ − s) · P (σ ≥ B) = (σ − s) · (1− Fb (σ))

To the left of Fb’s support, this is a linearly increasing function; in its support this is a differentiable
function, and to the right of it, the value of the function is 0. If s > b, choosing φ−1 (s) = s ensures
a zero surplus which is the maximum in this case. Otherwise, choosing σ between s and the right
end of the support ensures a positive surplus, so the maximizer of R is in Fb’s support.
Differentiating yields R′ (σ) = (1− Fb (σ))− fb (σ) · (σ − s) which is negative when φ (σ)− s > 0.
Since φ is monotone, if s < φ (b), the function is decreasing in the support, and attains maximum
at σ = b = φ−1 (s). Otherwise, the function attains maximum at φ−1 (s) = φ−1 (s) by first order
conditions.

A.2 Characterization of the Expected GFT

Proof of Lemma 3.6:

Proof. We start by proving the first identity. Under full information, trading takes place whenever
b ≥ s ≥ 0, thus:

GFTOPT =

∞∫
0

∞∫
s

(b− s)fb(b)fs(s)dbds =

∞∫
0

(−(1− Fb(b)) · (b− s)|∞s +

∞∫
s

(1− Fb(b))db) · fs(s)ds =

=

∞∫
0

(

∞∫
s

(1− Fb(b))db) · fs(s)ds = Fs(s) ·
∞∫
s

(1− Fb(b))db

∣∣∣∣∣∣
∞

0

+

∞∫
0

Fs(s) · (1− Fb(s))ds =

=

∞∫
0

Fs(s) · (1− Fb(s))ds

The third and the fifth steps follow from the fact that E[B] is finite, which is due to the
MHR property. To see this, note that for every x in Fb’s support, it holds that h(x) ≥ h(b), i.e.,
fb(x) ≥ fb(b) · (1− Fb(x)), and for x ≥ b (if exists) both sides equal zero, hence:

E[B] =

∞∫
0

(1− Fb(b))db = b+

∞∫
b

(1− Fb(b))db ≤ b+
1

fb(b)
·

∞∫
b

fb(b)db = b+
1

fb(b)
< ∞

The third step follows from the following consideration:
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E[B] =
∫∞
0 b ·fb(b)db = −(1− Fb(b)) · b|∞0 +

∫∞
0 (1−Fb(b))db = −(1− Fb(b)) · b|∞0 +E[B] and since

both sides are finite, the term −(1− Fb(b)) · b|∞0 equals zero.
The fifth step follows from the following consideration:∫∞

s (1− Fb(b))db = E[B]−
∫ s
0 (1− Fb(b))db −→

s→∞
E[B]− E[B] = 0.

We advance to proving the second identity. Assuming both agents play by the strategies proved
in Proposition 3.5, trading takes place whenever b ≥ φ−1(s) ≥ 0, thus:

GFTSO =

∞∫
0

∞∫
φ−1(s)

(b− s)fb(b)fs(s)dbds =

=

∞∫
0

(−(1− Fb(b)) · (b− s)|∞
φ−1(s)

+

∞∫
φ−1(s)

(1− Fb(b))db) · fs(s)ds =

=

∞∫
0

(φ−1(s)− s) · (1− Fb(φ−1(s))) · fs(s)ds+ Fs(s) ·
∞∫

φ−1(s)

(1− Fb(b))db

∣∣∣∣∣∣∣
∞

0

+

+

∞∫
0

Fs(s) ·
dφ−1(s)

ds
· (1− Fb(φ−1(s)))ds = Fs(s) · (φ−1(s)− s) · (1− Fb(φ−1(s)))

∣∣∣∞
0
−

−
∞∫
0

Fs(s) · ((
dφ−1(s)

ds
− 1)(1− Fb(φ−1(s)))− dφ−1(s)

ds
fb(φ−1(s))(φ−1(s)− s))ds+

+

∞∫
0

Fs(s) ·
dφ−1(s)

ds
· (1− Fb(φ−1(s)))ds =

∞∫
0

Fs(s) · (1 +
dφ−1(s)

ds
) · (1− Fb(φ−1(s)))ds

The fourth step follows from 0 ≤
∫∞
φ−1(s)

(1−Fb(b))db ≤
∫∞
s (1−Fb(b))db −→

s→∞
0 since φ−1(s) ≥ s

for every s by Observation 3.2.
The fifth step follows from the two following considerations: Firstly, by Observation 3.3, for

every b ≥ x ≥ φ(b) it holds that φ−1(x)− x = 1−Fb(φ
−1(x))

fb(φ−1(x))
= 1

h(φ−1(x))
and for every b ≤ x we get

φ−1(x) − x = x − x = 0, so in both cases it is bounded above by some constant k by the MHR
asumption. Hence, for a sufficiently large s it holds that:
0 ≤ Fs(s) · (φ−1(s)− s) · (1− Fb(φ−1(s))) ≤ 1 · k · (1− Fb(φ

−1(s))) −→
s→∞

0.

Secondly, due to the same reason, for s ≥ φ(b) it holds that dφ−1(s)
ds fb(φ−1(s))(φ−1(s) − s) =

dφ−1(s)
ds (1−Fb(φ−1(s))) and for s < φ(b) this also holds since φ−1(s) is constant and dφ−1(s)

ds = 0.

A.3 Quadratic Approximation

Proof of Lemma 3.9.

Proof. First, we remind that by definition, T (x) = f (x0) + f ′ (x0) · (x− x0) +
1
2f

′′ (x0) · (x− x0)
2.

Consider g = (f − T )|x≤x0
, that is f − T restricted to x ≤ x0. We note that g′′ (x) = f ′′ (x) −
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T ′′ (x) = f ′′ (x)− f ′′ (x0) ≥ 0, where the inequality follows from the assumption that f ′ is concave,
and so f ′′ is decreasing. We conclude that g is convex, and it attains minimum at x0 since g′ (x0) =
f ′ (x0)− T ′ (x0) = f ′ (x0)− f ′ (x0) = 0.

Thus, for every x ≤ x0 it holds that f (x) − T (x) ≥ f (x0) − T (x0) = f (x0) − f (x0) = 0, as
desired.

A.4 Tightness of Analysis for the Seller-Offering mechanism.

Proof of Proposition 3.12.

Proof. Using this mechanism:

1. Consider Fb (x) = 1−
√

1−x
1+x in the support [0, 1]. We remind that 1− Fb (x) = e−H(x), so it

follows that h (x) =
d( 1

2
·(ln(1+x)−ln(1−x)))

dx = 1
2 ·
(

1
1+x + 1

1−x

)
= 1

1−x2 . Hence, φ (x) = x+x2−1

and φ−1 (x) = 1
2 ·
(√

4x+ 5− 1
)
with the derivative 1√

4x+5
.

Computation shows that
∫∞
0 (1−Fb(s))ds =

∫ 1
0

√
1−s
1+sds =

1
2 · (π− 2) while

∫∞
0 (1 + dφ−1(s)

ds ) ·

(1−Fb(φ−1(s)))ds =
∫ 1
0 (1+

1√
4s+5

) ·
√

1− 1
2
·(
√
4s+5−1)

1+ 1
2
·(
√
4s+5−1)

ds = −
√√

5− 2+π−cos−1(12(1−
√
5)).

The ratio between these two terms is 0.7335 which is less than 2/e.

We note that by Lemma 3.6, the original integrals also include the Fs (s) parameter, but
choosing Fs ∼ Uniform[0, ϵ] for ϵ that tends to 0 yields that the values of the GFT tend to
the aforementioned values. Concretely, choosing ϵ = 0.001 yields the desired results.

2. Consider Fb ∼ Exponential (1), such that h (x) = 1 is a constant function, hence the MHR
and concavity assumptions hold. Moreover, φ (x) = x − 1 and thus φ−1 (x) = x + 1 with a
derivative that equals to 1 for every x. Let s ≥ 0. For such s, it holds that 1− Fb (s) = e−s

while (1 + dφ−1(s)
ds ) · (1− Fb(φ−1(s))) = (1 + 1) · e−(s+1) = 2

e · (1− Fb(s)). Taking any proper
distribution Fs, multiplying both terms by Fs (s) and integrating yields the desired result.

B Missing proofs from Section 4

B.1 Hardness of Efficiency Approximation with BNIC Mechanisms

Proof of Theorem 4.2.

Proof. This proof also relies on the Second-Best mechanism in a similar manner to Theorem 4.1.
We show a pair of distributions for which this approximation to the optimal efficiency holds.

Consider Fb ∼ Uniform[0, 1] and Fs (x) = x
1
4 on the support [0, 1]. The requirements from

the Seond-Best mechanism apply for these distributions since b− 1−Fb(b)
fb(b)

= 2b− 1 and s+ Fs(s)
fs(s)

=

s+ s0.25

0.25·s−0.75 = 5 · s are monotone increasing.
By the definition of the mechanism, trading take place whenever

b−s ≥ α·
(
Fs (s)

fs (s)
+

1− Fb (b)

fb (b)

)
= α·(4s+ 1− b) ⇔ b+α·b ≥ s+4α·s+α ⇔ b ≥ s+ 4α · s+ α

1 + α
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Where α solves the equation:∫ 1
1+4α

0

∫ 1

s+4α·s+α
1+α

(b− s) · 1 · 1
4
s−

3
4dbds =

∫ 1
1+4α

0

∫ 1

s+4α·s+α
1+α

(4s+ 1− b) · 1 · 1
4
s−

3
4dbds

The upper limit in the integral is 1
1+4α since s+4α·s+α

1+α < 1 iff s < 1
1+4α for α ∈ (0, 1].

We now calculate these two integrals.
Calculating shows:

LHS (α) =

∫ 1
1+4α

0

∫ 1

s+4α·s+α
1+α

(b− s) · 1 · 1
4
s−

3
4dbds =

=

∫ 1
1+4α

0

(
1

4
s−

3
4 ·
(
b2

2
− s · b

)∣∣∣∣1
s+4α·s+α

1+α

)
ds =

=

∫ 1
1+4α

0

1

4
s−

3
4 ·

(
1

2
− s− 1

2
·
(
s+ 4α · s+ α

1 + α

)2

+ s · s+ 4α · s+ α

1 + α

)
ds =

= − 1

8 (1 + α)2
·
∫ 1

1+4α

0

(s (2α− 1) + 2α+ 1) · (s (4α+ 1)− 1)

s3/4
ds =

= − 1

8 (1 + α)2
·
∫ 1

1+4α

0

(
s5/4

(
8α2 − 2α− 1

)
+

−2α− 1

s3/4
+ s1/4

(
8α2 + 4α+ 2

))
ds =

=

(
s9/4

(
−8α2 + 2α+ 1

)
18 (1 + α)2

+
s1/4 (2α+ 1)

2 (1 + α)2
−

s5/4
(
4α2 + 2α+ 1

)
5 (1 + α)2

)∣∣∣∣∣
1

1+4α

0

=

=
16
(

1
4α+1

)5/4
(α (9α+ 7) + 1)

45 (1 + α)2

And:

RHS (α) =

∫ 1
1+4α

0

∫ 1

s+4α·s+α
1+α

(4s+ 1− b) · 1 · 1
4
s−

3
4dbds =

=

∫ 1
1+4α

0

(
1

4
s−

3
4 · (

(
4s · b+ b− b2

2

)∣∣∣∣1
s+4α·s+α

1+α

)
ds =

=

∫ 1
1+4α

0

1

4
s−

3
4 ·

(
4s+ 1− 1

2
− (4s+ 1) · s+ 4α · s+ α

1 + α
+

1

2
·
(
s+ 4α · s+ α

1 + α

)2
)
ds =

= − 1

8 (1 + α)2
·
∫ 1

1+4α

0

(s (4α+ 1)− 1) · (s (4α+ 7) + 1)

s3/4
ds =

= − 1

8 (1 + α)2
·
∫ 1

1+4α

0

(
s5/4

(
16α2 + 32α+ 7

)
− 1

s3/4
− 6s1/4

)
ds =

=

(
−
s9/4

(
16α2 + 32α+ 7

)
18 (1 + α)2

+
s1/4

2 (1 + α)2
+

3s5/4

5 (1 + α)2

)∣∣∣∣∣
1

1+4α

0

=

=
16
(

1
4α+1

)5/4
(5α+ 2)

45 (1 + α)2
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Equating both terms shows that the equivalent equation is α (9α+ 7) + 1 = 5α + 2 with the

solutions α1 =
−1+

√
10

9 and α2 =
−1−

√
10

9 . The former of these solution is the appropriate one since
it is positive.

We now observe that LHS (α1) = GFTMS , and placing α1 yields that GFTMS = 0.31887.
Moreover, we note that:

GFTOPT =

∫ 1

0

∫ 1

s
(b− s) · 1 · 1

4
s−

3
4dbds =

=
1

4

∫ 1

0
s−3/4

(
1

2
− s2

2
− s+ s2

)
ds =

=
1

4

∫ 1

0

(
1

2s3/4
+

s5/4

2
− s1/4

)
ds =

=

(
1

4
·

(
1

2
· s

1/4

1/4
+

1

2
· s

9/4

9/4
− s5/4

5/4

))∣∣∣∣∣
1

0

=

=
1

4
·
(
2 +

4

18
− 4

5

)
=

16

45

and that: E[s] =
∫ 1
0 (1− Fs (s)) ds = 1− s5/4

5/4

∣∣∣1
0
= 1

5 .

Thus, we conclude that: EFFMS
EFFOPT

≈ 0.31887+0.2
16/45+0.2 = 0.934
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