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Abstract

In the presence of self-interested parties, mechanism designers typically aim to
implement some social-choice function in an equilibrium. This paper studies the cost
of such equilibrium requirements in terms of communication. While a certain amount of
information x needs to be communicated just for computing the outcome of a certain
social-choice function, an additional amount of communication may be required for
computing the equilibrium-supporting payments (if exist).

Our main result shows that the total amount of information required for this task
can be greater than x by a factor linear in the number of players n, i.e., n · x (under
a common normalization assumption). This is the first known lower bound for this
problem. In fact, we show that this result holds even in single-parameter domains. On
the positive side, we show that certain classic economic domains, namely, single-item
auctions and public-good mechanisms, only entail a small overhead.

keywords: Implementation, Mechanism Design, Communication Complexity, Revelation
Principle.

JEL codes: D82, D83.



1 Introduction

Consider the goal of designing mechanisms for environments with self-interested players.
We seek mechanisms that admit the following two properties: first, tractability in the
information-theoretic sense, i.e., a low amount of information needs to be communicated
in order to realize the outcome of the mechanism. Second, incentive compatibility, i.e.,
the existence of some payments that supports the implementation of the outcome of the
mechanism in equilibrium. In this work, we show that tractability and the existence of
supporting payments are insufficient to establish that implementing the outcome of the
mechanism in equilibrium will indeed be practical. This is due to the fact that a non-
trivial amount of additional communication between the different parties may be required
in order to compute equilibrium-supporting payments.

The question of how much overhead one incurs from the computation of incentive-
compatible payments was recently raised by Fadel and Segal (2009) (henceforth, FS), who
termed this overhead the “communication cost of selfishness”. In their paper, they studied
the communication overhead both for Bayesian equilibria and for ex-post equilibria. In
this work we focus on ex-post equilibria - i.e., situations in which players would not want
to change their behavior in retrospect, even if they were told (after the fact) everything
about the other players. Our main result is that the communication overhead of computing
equilibrium-supporting payments may be linear in the number of players. In our paper,
we will use the term “Communication Cost of Incentive Compatibility” or when it is clear
from the context we will just write communication cost (formal definitions will be given
later in Section 3).

Our exploration of the communication cost of computing incentive-compatible pay-
ments takes place within the communication-complexity framework that was developed
in the computer-science literature about three decades ago. The basic communication-
complexity model is due to Yao (1979); in this 2-agent model, each agent i ∈ {1, 2} pri-
vately holds a piece of information vi and the question is how many bits of information are
required in order to determine the outcome of some function f(v1, v2) in the worst case.
One example, with a straightforward application in auction theory (given below), is where
f(v1, v2) = max{v1, v2}. To illustrate our framework and provide an intuition for why the
computation of incentive-compatible payments might be costly in terms of information,
consider the famous 2-bidder Vickrey auction: there are two bidders, 1 and 2, with private
values v1 and v2, respectively, for a single item on sale. Assume that both v1 and v2 are
in {0, ..., 2k − 1}. The goal is to sell the item to the bidder with the highest value. It is
well-known (Vickrey (1961)) that by allocating the item to that bidder, and charging him
the second-highest value, one can induce truthful behavior of the participants.

How many bits of information are required to figure out who the bidder with the
highest value (the winning bidder) is? The following simple procedure (or protocol in the
communication-complexity jargon) does exactly that: Player 1 reveals his value to player
2. Player 2 compares the two values, determines the identity of the winning bidder, and
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informs 1. Observe that any value in {0, ..., 2k − 1} can be represented via k bits (binary
representation). Hence, this simple protocol requires k + 1 bits (after bidder 1 transmits
k bits, bidder 2 need only transmit one more bit indicating the identity of the bidder with
the highest value).

However, to achieve incentive-compatibility, finding the bidder with the highest value
does not suffice; one must also learn the value of the other bidder in order to determine the
“second price”. Now, the aforementioned simple protocol is no longer the solution, as it
could be that the bidder revealing his value is not the one with the lower value. How many
additional bits must the bidders exchange to learn not only who the winning bidder is,
but also what he must pay? It turns out that in the single-item auction example, no much
additional information needs to be communicated for determining the relevant payments;
in this paper, we would like to explore whether there are environments where this overhead
may be a real obstacle.

These kind of questions motivate our study of the communication cost of incentive
compatibility. Our main result can roughly be stated as follows:

Theorem: [Informal] There exist social-choice functions such that their outcome can
be computed by communicating x bits, but determining both the outcome and equilibrium-
supporting payments requires about n · x bits of communication, where n is the number of
players.

We prove that this result holds even for very simple domains where the private values
of the players are one dimensional (“single-parameter” domains), where in each possible
outcome every player either “wins” or “loses”. The theorem is proven under the common
normalization assumption, which, in the single-parameter domain that we consider, simply
means that losing players pay zero. While this assumption does not seem very restrictive
at first glance, we currently do not know how to relax it. (The normalization assump-
tion is only required for proving the above impossibility result, and actually strengthens
our positive results.) Whether a similar result can be proven without the normalization
assumption is left as an intriguing open question, see further discussion in Section 6.

Our lower bound provides the first evidence that the communication cost due to the
demand for incentive compatibility may be significant, and it matches the linear upper
bound for single-parameter domains in FS. The fact that the communication requirements
of mechanisms increases proportionally to the size of the market may have a tremendous
effect on the scalability of these mechanisms. This is crucial when applying mechanism-
design methods to large-scale Internet-based markets.

Informally, in order to prove our main result we need to construct a social-choice func-
tion (SCF) f for which the following requirements hold:1

1Following a common tradition in computer science, in this paper we refer to a communication cost
as “low” if it is within a constant factor of the communication requirement of the original (non-strategic)
problem; By a “constant factor” we mean that the ratio is independent of the parameters of the problems

2



1. f can be implemented in ex-post equilibrium (in single-parameter domains this means
that f should be monotone, see Section 3).

2. f can be computed with “low” communication (about the same as the size of the
private information of a single agent).

3. Computing equilibrium-supporting payments requires “high” communication (about
the same as the combined size of the private information of all agents).

The difficulty in finding such a social-welfare function is demonstrated by the analysis of
two classic economic problems: public goods and single-item auctions. For these problems,
we show that the requirements are not met. This enables us to prove positive results for
these two problems, by showing that the additional information required to compute the
equilibrium-supporting payments is low (up to a small constant multiplicative factor). This
claim is proven in an inherently different way for each one of these problems.

Public goods: Consider a social planner who wants to know whether a bridge should be
built or not. A set of n players have utilities v1, ..., vn from using the bridge, where vi is
private information of player i. To maximize the social welfare the bridge should be built
if and only if

∑n
i=1 vi ≥ C where C is its construction cost. We prove that computing

both the outcome and the payments merely requires about six times the communication of
computing the outcome alone. Hence, the communication cost in this case is (relatively)
small.

Single-item auction: In a single-item auction with n buyers (players) each buyer i has
private value vi for the item on sale, and our goal is to sell the item to the player with
the highest value. We prove that determining the right allocation and the appropriate
payments requires at most three times the communication amount needed to determine
the allocation alone.

As these two problems illustrate, coming up with a social-welfare function for which
all of our requirements hold is a non-trivial task. We stress that achieving a better lower
bound than the linear lower bound shown in this paper may be hard. The communication
cost in known to be at most linear (in the number of players) for welfare-maximization
objectives and in single-parameter domains (in FS). Thus a better lower bound seems
likely to involve the construction of multi-parameter non-welfare maximizing social-choice
functions, a class of functions that is relatively little understood (in terms of characterizing
incentive-compatible payments).

1.1 Related Work

Fadel and Segal (2009) (FS) were the first to study the communication cost of incentive

(for example, the number of agents). A communication cost is considered “high” if it is non-constant, and
increases as the original problem becomes more complex.
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compatibility. They proved exponential upper bounds, both for Bayesian-Nash equilibria
and ex-post equilibria. They presented a surprising matching exponential lower bound for
the Bayesian case, but their only lower bound for the ex-post equilibrium case was 1 extra
bit. The main open question posed in their paper remains unsolved: can the exponen-
tial upper bound for the communication cost in ex-post implementation be matched by a
lower bound? FS also proved a linear (in the number of players) upper bound on the com-
munication cost of incentive compatibility in single-parameter domains; Another positive
result by FS is an upper bound on the communication cost of incentive compatibility for
welfare maximization goals, using an approach by Reichelstein (1984) where agents pay
the sum of the reported values of the other agents; Therefore, after realizing the efficient
outcome supporting payments can be computed if each agent communicates its value for
this outcome.

Another work which is very close to ours is the independent work of Lahaie and Parkes
(2008) (henceforth, LP). They considered the amount of information overhead of comput-
ing Vickrey-Clarke-Groves (VCG) payments in socially-efficient mechanisms. LP showed
settings with multi-dimensional types, in which the näıve VCG protocol that computes
several efficient allocations in sequence (one execution with all n agents, and n executions
with n−1 agents, where one of the agents is removed each time) is asymptotically optimal.
This derives a result along the same line as our main impossibility result, that the commu-
nication cost of realizing equilibrium-supporting payments might be linear in the number
of players. LP proved their result using a neat characterization of the communication
requirement of the VCG outcome via the concept of universal competitive equilibrium.

Our results, and the result by LP are complementary yet incomparable, in the sense
that our results do not imply the results of LP, and vice versa, as we now explain. The work
of LP is different from ours in two important respects: the kind of environments considered
and the kind of mechanisms considered. When proving negative results, the more restrictive
the environment, and the class of mechanisms considered, the stronger the result. We point
out that, both in terms of the environments considered, and of the class of mechanisms con-
sidered, our results do not apply to more restricted cases than those of LP, and vice versa.
More specifically, LP study multi-parameter domains in which the objective is maximizing
social welfare. We, in contrast, consider one-dimensional environments (single parameter
domains), but do not restrict our attention to social-welfare maximization. Thus, our work
and the work of LP consider two different restrictions on environments; while we remove
from consideration complex (multi-dimensional) players’ types, LP eliminate the possibility
of social choice functions that do not optimize social welfare. In addition, the work of LP
and ours consider two different restrictions on mechanisms; while LP focus on the popular
VCG mechanisms, which charge every player the externality he imposes on the other play-
ers, in this work we focus on normalized incentive-compatible mechanisms. Indeed, LP do
not claim that their results hold for all normalized incentive-compatible mechanisms. (In
fact, this is not true; since for the class of valuations constructed in Section 6.2.2 of LP the
efficient allocation is known before the bidding procedure starts, then a trivial mechanism
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that announces the efficient allocation and charges zero payments from all players is nor-
malized and incentive compatible.) We do not know whether the lower bound by LP can
be modified to hold for all incentive-compatible normalized mechanisms, and this remains
an interesting open question (see Section 7).

Our linear lower bound for single-parameter domains holds for deterministic compu-
tation of payments that induce incentive computability. Babaioff et al. (2010) consider
the case that one allows for randomized mechanisms that are only incentive compatible in
expectation, and is also willing to allow two-directional payments (from the mechanism to
the agents and vice versa). Babaioff et al. (2010) establishes that, for any social choice
function, it is possible to implement a social choice function that outputs the same outcome
with high probability (arbitrary close to 1), with no extra communication cost. Following
the work of Babaioff et al. (2010), Segal2 has observed that when considering domains
where no information is revealed over time, as is the case with all the domains considered
in this paper, one can take any single-parameter SCF and implement it (exactly) by a ran-
domized, incentive compatible in expectation mechanism, with only a low communication
cost. These results show that our negative results in this paper cannot be extended to
randomized mechanisms that are only incentive compatible in expectation.

Both the work by FS and our paper belong to a more general line of research studying
communication and information aspects of various economic environments, for example
in auctions (Nisan and Segal (2006); Blumrosen and Nisan (2009, 2010); Segal (2010))
and in other economic domains (Blumrosen and Feldman (2006); Segal (2007); Hart and
Mansour (2010)). A recent survey on this line of research in the context of combinato-
rial auctions is by Segal (2006). A recent paper by Papadimitriou et al. (2008) (see also
Dobzinski and Nisan (2007)) presented settings where incentive-compatible mechanisms
that are approximately efficient must entail exponential communication, while without the
incentive-compatibility requirement such mechanisms only require polynomial communica-
tion.

The basic model for communication complexity was presented by Yao (1979), and a
survey on communication complexity was given by Kushilevitz and Nisan (1997). Some
early and influential work in the economics literature presented models in the same spirit
as Yao’s model, where the main difference is that these economic model allowed the com-
munication of real numbers. This line of work goes back to the seminal work by Hurwicz
(1960), and it was later shown that Walrasian mechanisms use message spaces of the lowest
possible dimensions among the Pareto efficient mechanisms (see the work by Mount and
Reiter (1974); Hurwicz (1977) and the survey in Hurwicz and Reiter (2006)).

Another related line of research studied the computational consequences of the need to
determine equilibrium-supporting payments. The question of the computational burden of
computing payments in social-welfare maximization environments was raised in the seminal
paper by Nisan and Ronen (2001). This question has received attention since (Hershberger

2Private communication, 2010.
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and Suri (2001); Emek et al. (2008); Bikhchandani et al. (2002)). Unlike our work, and
that of FS and LP, these works considered the computational complexity, and not the
informational cost of realizing the appropriate payments. Several works studied a different
related question, of how to maximize the objective of the planner subject to being restricted
to a fixed amount of communication that the mechanism can use. These papers studied
either profit or efficiency maximization, see the recent survey by Mookherjee (2006), see
also , e.g., Green and Laffont (1987); Melumad et al. (1992); Blumrosen et al. (2006).

1.2 Organization of the Paper

The rest of the paper is organized as follows: In Section 2 we give an informal discussion
of ways for proving impossibility results regarding on the communication cost of incentive-
compatibility, and demonstrate these ideas through a simple 2-player public good setting.
We present our model and notations in Section 3. In Section 4, we prove constant upper
bounds on the communication cost of incentive compatibility for the classic models of
single-item auctions and public goods among n players. Our main impossibility result is
a linear lower bound which is presented in Section 5. Finally, in Section 6 we discuss the
issue of extending our results to the non-normalized case, and in Section 7 we present open
questions and directions for future research.

2 Informal Example: 2-Player Public-Good

Before making our framework and results precise, let us consider an informal example which
would enable us to convey the essence of our techniques. Consider the classic “public good”
problem, which deals with the construction of a public project. Each player i in a set of
players has a “benefit” of vi from using the public good, and the social planner aims to
implement the efficient outcome and build it if and only if the sum of benefits is at least the
fixed construction cost C. We restrict our attention to the 2-player case, where v1 and v2
are integers in {0, ..., 2k − 1} (for some integer k > 0), and C = 2k. This SCF is described
in Figure 1.3

Input: values v1, v2 ∈ {0, ..., 2k − 1}.

Output: “Build” if v1 + v2 ≥ 2k, ”Do Not Build” otherwise.

Computing the outcome alone can be done with k + 1 bits. How many bits are
required to determine the outcome? Note that we are interested in discovering the number
of bits that will be sufficient for this task for all possible inputs (i.e., pairs of player values).

3Note that we are interested in finding some payments that support an incentive-compatible mechanism.
The question whether there exists such payments with good properties (e.g., that cover the construction
cost) is secondary to our main goal.
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As in our introductory example, the following simple protocol is sufficient: player 1 reveals
his information (v1) to player 2 (via k bits). Player 2 computes v1 + v2, checks whether
it is at least C, and informs player 1 (via one additional bit). Therefore, an exchange of
k+ 1 bits is sufficient for both players to compute the outcome of the mechanism for every
type profile.

Computing the outcome and incentive-compatible payments requires at least
2k − 1 bits. Observe that each player has 2k possible values, and thus the two players
have 2k · 2k = 22k possible pairs of values v1, v2. Also observe that for more than half
of these pairs, i.e., more than 22k−1 pairs, the outcome is “Build”. (These are the types
profile drawn on and under the diagonal in Figure 1.) We shall denote the set of all pairs
of values for which the outcome is “Build” by B. An important fact about incentive-
compatible payments is that, under the normalization (losers pay zero)assumption, then,
for every v1, v2 in B, the (only) incentive-compatible payments must be C− v2 and C− v1,
respectively. This has a very intuitive interpretation: Each player is charged the minimal
value he had to announce in order to reach a “Build” outcome.4 This value is simply the
cost of the public good (C) minus the value of the other player.

Therefore, for every two different pairs of values in B any incentive-compatible mech-
anism must output two different pairs of payments. This is shown in Figure 1, where the
equilibrium payments are actually determined by a projection on the main diagonal (the
line where the designer is indifferent between building the bridge or not). This means that
any incentive-compatible mechanism must have at least |B| distinct outcomes. It is intu-
itive and well known (Kushilevitz and Nisan (1997)), that no communication protocol can
output |B| distinct outcomes without requiring the communication of at least log |B| bits.
Hence, any incentive-compatible mechanism requires the transmission of at least log |B|
bits. As |B| ≥ 22k−1, we get that log |B| ≥ 2k − 1.

The communication cost of incentive compatibility. We now know that, for any
value of k, the outcome alone can be computed by transmitting at most k+ 1 bits, and, in
contrast, computing the outcome and payments that support this outcome in equilibrium
requires at least 2k − 1 bits. That is, the computation of the outcome and matching
incentive-compatible payments is almost twice as costly as computing the outcome alone
(observe that the ratio between computing the outcome and payments, and computing the
outcome alone, is arbitrarily close to 2 as k grows). Note that, in the 2-player case, one
can always compute the outcome and payment via 2k bits by having each player transmit
all of his private information (k bits) to the other player. Hence, our result regarding the
communication cost of incentive compatibility is essentially tight for the 2-player case.

4These equilibrium-supporting payments are unique under the normalization assumption, i.e., that the
players pay 0 when losing. We will require this assumption also for our more general impossibility result.
The solution in this public-good setting without the normalization assumption is discussed towards the end
of this paper in Section 6.
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Figure 1: (2-player public good.) The figure draws the 2-player public good social choice
function. The row value represents the value of player A, and the column value represent the value
of player B. Both values are between [0, 1], and the public good should be built if the sum of these
values is at least the construction cost of 1. The unique (normalized) payments that support an
incentive compatible implementation of this function are determined by projection of the preference
point onto the diagonal; for example, given the preference profile x, player A should pay pA and
player B should pay pB . It is easy that the payments are distinct in every valuation profile in which
the public good is built.

The n-player case. Our goal in this paper is to show that, as in the 2-player case,
the communication cost of computing payments might sometimes be linear in the number
of players. That is, we wish to show that there exist social-choice functions for which
computing the outcome and payments is roughly n times more expensive, in terms of
communication, than computing the outcome alone (where n is the number of players). As
we shall later see, the public good setting will no longer be of use to us in proving such a
result and different social-choice functions will have to be considered.

3 Background and Model

3.1 Mechanism Design

The mechanism design setting considered in this paper is as follows: there is a set N of
n players, and a set of outcomes O. In our paper, O denotes all possible sets of winning
players, that is, O = 2N . Each player i has a valuation function, or type, vi : O → R≥0, that
belongs to a set of valuation functions V . A social-choice function (SCF) is a function that
assigns every n-tuple of players’ valuation functions v = (v1, ..., vn) ∈ V n (“type-profile”)
an outcome o ∈ O. Each vi is private and only known to i.

A payment function is a function p : V n → Rn.

8



Definition 1. A social-choice function f is said to be implementable (in the ex-post Nash
sense) if there is a payment function p such that the following holds:

∀v = (v1, ..., vn) ∈ V n, ∀i ∈ N, ∀v′i ∈ V,

vi(f(v))− p(v) ≥ vi(f(v′i, v−i))− p(v′i, v−i)
(where (v′i, v−i) is the type profile in which i has type v′i and every player j 6= i has type vj)

Informally, f is implementable if it is possible to come up with a payment scheme
that incentivizes players to report truthful information. For example, the social-choice
function in single-item auctions (where the item should be sold to the player with the
highest value) is f(v1, ..., vn) ∈ argmaxi∈Nvi, where vi is the value of agent i for the
item. The payment scheme in a second-price (Vickrey) auction is known to implement this
social-choice function in equilibrium.

In this paper, we provide several examples of single-parameter domains, where the type
of a player can be represented by a single scalar. We consider specific single-parameter
environments where every outcome defines whether each player “wins” or “loses” (i.e.,
f(v) ⊆ N is the set of winners). A player gains a value of vi ≥ 0 if she wins, and she gains
0 when losing. We focus on normalized mechanisms in which losers pay 0.

Definition 2. (Normalization Assumption.) In a single-parameter environment, a
mechanism that implements the social-choice function f satisfies the normalization (or
losers-pay-zero) assumption if for every player i and type profile v such that i /∈ f(v) we
have that i pays zero, i.e., pi(v) = 0 (where f(v) ⊆ N is the set of chosen winners).

The characterization of implementable single-parameter social-choice functions relies
on the following property.

Definition 3. A single-parameter SCF f is monotone if for every player i ∈ N , all
v−i ∈ V−i and all v′i > vi s.t. v′i, vi ∈ V it holds that if i ∈ f(vi, v−i) then i ∈ f(v′i, v−i).

The following characterization is well known (see, e.g., Mirrlees (1971), Myerson (1981),
Mookherjee and Reichelstein (1992)).

Observation 3.1. A single parameter SCF f is implementable if and only if it is mono-
tone. Under the normalization assumption, a winner has to pay the minimal bid she has
to declare in order to win.5

We note that in our proofs we use the Normalization assumption from Definition 2 only
via the use of Observation 3.1.

5The payment is unique in the case that bids come from the continuous domain of non-negative real
numbers. In our discrete bids setting, the payment can actually lie within an interval between two consec-
utive discrete bids which contains the minimal bid the winner has to declare in order to win. Yet, any such
payment can be uniquely mapped to a payment taken from the domain of discrete bids, without any ad-
ditional communication. Thus, our main impossibility result shows that computing any of these payments
requires communicating many bits.
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3.2 Communication cost of Incentive Compatibility

We consider the communication problem in which each vi is private and only known to
i, and the players need to exchange information in order to compute the outcome of f .6

We work in the broadcast model in which each sent bit is received by all players (and
not addressed only to one player). Let CC(f) denote the communication complexity of
computing the outcome of f . Informally, the communication complexity of a function is
the minimal number of bits that is required to compute the function (for any input). The
communication complexity of a function is a worst-case measure, describing the minimal
amount of information that can guarantee determining the outcome of f on every input.
This model was first suggested by Yao (1979), and is the standard communication model
in computer-science theory which recently had several applications in economics (see, for
example, Nisan and Segal (2006); Segal (2007); Hart and Mansour (2010); Fadel and Segal
(2009)). For readers that are not familiar with the concept, we give the formal definition
of a communication protocol and of communication complexity in Appendix A

How much additional communication burden is imposed by the necessity to compute
payments that guarantee truthfulness? Let CCIC(f) denote the communication complex-
ity of computing the outcome of f and payments that guarantee incentive compatibility
(that is, computing the outcome of both f and some payment function that leads to the
implementability of f .). Formally, given a social-choice function f let fp : V n → O × Rn

denote a function with two outputs, an outcome and a payment vector, such that the
output selection in fp is identical to f . We say that fp is incentive compatible (IC) if
f is implementable via the payment function in fp as in Definition 1. We say that fp is
normalized if it satisfies the normalization assumption. Then,

CCIC(f) = min
fp is IC and normalized

{CC(fp)} (1)

We note that FS did not require the mechanisms to be normalized. We refer the reader
to Section 6 for a discussion on the normalization assumption in our setting.

In order to formally define the communication cost of incentive compatibility we need to
be concrete about the information each player holds: Let fk be a social-choice function with
n players such that each player’s valuation is represented using k bits of information, for
some fixed k ∈ N (although fk depends on n, as the number of agents n will always be clear
from the context we simplify the notation and do not explicitly express that dependency
in our notation). Formally, fk : {0, 1}k×n → O, i.e., for every (v1, v2, ..., vn) with each
vi ∈ {0, 1}k, fk picks an outcome fk(v1, v2, ..., vn).

Definition 4. The communication cost of incentive compatibility of fk is defined to be
CCIC(fk)
CC(fk)

.

6We shall regard the exchange of information as taking place between the players themselves, without
another entity that represents the social planner or the auctioneer. This strengthen our main result which
is a lower bound. It is also easy to verify that our constant upper bounds for n players single item auction
and public good can be modified to constant upper bounds even with the additional entity.
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Our main result shows that for some social-choice functions fk a significant communi-
cation overhead may be incurred, and we prove that this holds even in single-parameter
domains. Formally, in such domains the valuation of a player is given by a number in [0, 1]
represented by k bits (k is the precision in the representation of vi). That is, for every
player i there is some ti ∈ {0, ..., 2k − 1}, such that vi = ti · 2−k.

One alternative to Def. 4 is to define the communication cost of selfishness as limk→∞
CCIC(fk)
CC(fk)

.
This would make sense as most of our results hold given any small ε and for large enough
k’s, and this alternative definition would eliminate the need for the ε qualification. Defi-
nition 4, however, enables us to show the tradeoff between k and ε in a more explicit way,
while the results in the limit are can be immediately deduced.

3.3 Communication Complexity: Background and Basic Observations

This section presents some basic background of some of the tools we use from the theory of
communication complexity. For a comprehensive survey on the subject we refer the reader
to the book by Kushilevitz and Nisan (1997).

We will start by presenting two easy observations that essentially show that when
one needs to distinguish between many different outcomes, the communication complexity
cannot be very small.

Observation 3.2. If the range of function f is of size m (|f(V )| = m), then any commu-
nication protocol for f requires at least log(m) bits. (f(V ) is the set of different outcomes
in the range of f .)

Observation 3.3. For any implementable function fk with n players each holding k bits
it holds that CC(fk) ≤ k(n− 1) + dlog(|fk(V )|)e and CCIC(fk) ≤ kn .

Proof. This is shown by considering two trivial protocols: To compute fk, each of the
players but one transmits all his information, and the last player computes the outcome
and transmits this outcome. As there are |fk(V )| possible relevant outcomes, dlog(|fk(V )|)e
bits are clearly sufficient to encode all these outcomes. To compute CCIC(fk) simply let
all players transmit all of their private information.

Our proofs use a common communication-complexity technique called “fooling sets”.
Intuitively, a fooling set is a large set of possible inputs such that any communication
protocol must have a different execution (exchange of bits) for every two of them. Fooling
set arguments are based on a well known property of communication protocols (Kushilevitz
and Nisan (1997)): if a protocol execution is exactly the same on two inputs, it must output
the exact same outcome for any possible “combination” of these inputs. That is, suppose
that some communication protocol that computes a social function f for a two-player
setting executes exactly the same for (v1, v2) and (v′1, v

′
2) (thus outputs the same outcome

on both), then, that protocol would execute exactly the same for the inputs (v′1, v2) and
(v1, v

′
2), and thus must also output the same outcome for these inputs.
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This suggests a way for proving lower bounds on the communication complexity of
social-choice functions: Find a subset X of the inputs, where parts of each input are held
by the players as their types; Then, prove that even though the social choice function
assigns the same outcome for every input in this subset, a combination (in the above
sense) of every two members is assigned a different outcome. This will imply that any
communication protocol must distinguish between every two members of the subset of
inputs. This, in turn, would mean that log |X| is a lower bound on the number of bits that
need to be transmitted in order to compute f .

Formally, let f be a social-choice function. Let v, v′ be two valuation functions. Let

Vv,v′ = {v′′ = (v′′1 , ..., v
′′
n)|∀i ∈ N v′′i = vi or v

′′
i = v′i}

A well known fact in communication complexity (see Kushilevitz and Nisan (1997)) is the
following:

Theorem 3.4. [Fooling Set Argument] Let f : V = V1×. . .×Vn → O be a social-choice
function. For every V ′ ⊆ V such that:

• there is an outcome o∗ ∈ O such that for every v′ ∈ V ′ f(v′) = o∗.

• for every v, v′ ∈ V ′ ∃v′′ ∈ Vv,v′ such that f(v′′) 6= o∗

it holds that CC(f) ≥ log(|V ′|).

4 Environments with a Small Overhead

We start by discussing the communication cost required for computing the equilibrium-
supporting payments in two classic environments: single-item auctions and public goods. It
turns out that in both environments this additional information is low – at most a constant
factor of 3 for the first and at most 6 for the latter. That is, even with numerous bidders,
determining the relevant payments requires at most 6 times the information that is needed
to determine the outcome alone in these examples.

4.1 Single-Item Auctions

In a socially-efficient single-item auction, a seller aims to sell an item to the bidder who val-
ues it the most. We now formally define the corresponding social-choice function Single-
Item-Auction.

Definition 5 (Single-Item-Auction).
Input: valuations v1, ..., vn ∈ N
Output: a bidder with the highest value, i.e., argmaxi∈Nvi (breaking ties lexicographically).

12



If bidder i wins, his value for the outcome is vi; otherwise, his value is 0. From Single-
Item-Auction we can derive the function Single-Item-Auctionk for the case where the
values of the players are numbers between [0, 1] represented by k bits of information, that
is, vi = ti · 2−k for some integer ti ∈ {0, ..., 2k − 1}. It is well known that this function
is implementable: if winners pay the second-highest bid then the auction is (dominant-
strategy) truthful.

Next, we show that for Single-Item-Auction the communication cost of incentive
compatibility is at most a small constant (i.e., 3).

Proposition 4.1. The communication cost of incentive compatibility for the social-choice
function Single-Item-Auction is at most 3.

Proof. To prove the claim we show that for every k, it holds for the social-choice function
fk =Single-Item-Auctionk that

CCIC(fk) ≤ 2 · CC(fk) + k ≤ 3 · CC(fk) (2)

To show that CCIC(fk) ≤ 2CC(fk) + k we present a simple protocol for CCIC(fk):
let P be the optimal protocol for computing fk; by definition, P communicates at most
CC(fk) bits when running on any input. Now, we first run P to find the player with
highest value. We then remove the highest bidder and run the protocol P for fk again (or
more formally, we replace this player with a bidder with a zero valuation so we can use
the same protocol as a “black box”). Now the players know who is the player with the
second highest value. Finally, this player transmits his value (the payment), which requires
k more bits. Overall, the new protocol runs two executions of P plus at most k bits, a
total of 2CC(fk) + k.

The last weak inequality in Equation 2 is a result of the following claim. (We prove
this claim for completeness. Similar claims were proven before, e.g., by Nisan and Segal
(2006).)

Claim 1. For every n ≥ 2, CC(Single-Item-Auctionk) ≥ k

Proof. We shall prove that CC(fk) is large by constructing a “fooling set” of size 2k. By
Theorem 3.4 this shows that CC(fk) ≥ k. Consider all pairs (v1, v2) such that v1 = v2.
No two such pairs can have exactly the same execution of the communication protocol:
assume in contradiction that (v1, v2) and (v′1, v

′
2) are two distinct type-profiles that have

the same execution. Observe that for all these type-profiles bidder 1 wins and bidder 2
loses. W.l.o.g., let v1 < v′1. Then, (v1, v

′
2) should also have the same execution as (v1, v2)

and (v′1, v
′
2). However, this leads to a contradiction because in this case player 2 should

win and not player 1. Hence, there are at least 2k pairs such that each two must have a
different execution by any communication protocol, and so any protocol that computes f
must transmit at least k bits.

This concludes the proof of Proposition 4.1
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4.2 The Public-Good Setting

We now consider another classic economic setting - the construction of a public project
(“public good”). Each player in a set of players has a “benefit” of vi from using the public
good, and the social planner aims to build it only if the sum of benefits is at least the
construction cost C. The function is defined given the parameter C ≥ 0.

Definition 6 (C-Public-Good).
Input: valuations v1, ..., vn ∈ N.
Output: “Build” if

∑n
i=1 vi ≥ C; “Do not build”, otherwise.

It is easy to observe that the payments that implement this SCF in a normalized
mechanism are pi = C −

∑
j 6=i vj in the case of “Build” (and all players win). Again, we

consider the derived SCF C-Public-Goodk for the case where the types of the players
are in numbers in [0, 1] represented by k-bit strings, i.e., vi = ti · 2−k for some integer
ti ∈ {0, ..., 2k − 1}.

In Section 2, we showed that for the public good problem with 2 players, the communi-
cation cost of incentive compatibility is essentially 2. Yet, it turns out that when moving
to an n-player setting the overhead remains constant and does not grow with n. Prov-
ing this upper bound requires more work than the previous auction example. The main
intuitive argument here is that solving the allocation problem alone (whether to build or
not) already requires all the players to reveal almost their entire private information, so
the overhead incurred by realizing the desired payments must be limited.

Theorem 4.2. Fix ε > 0. For any C, the communication cost of incentive compatibility of
the social-choice function C-Public-Goodk with n ≥ 3 agents and k that is large enough
is at most 2 · n

n−2 + ε ≤ 6 + ε.

Proof. The players values v1, ..., vn are all in [0, 1] and we are interested in figuring out
whether Σivi ≥ C. Obviously, when C = 0 or C ≥ n then the answer is trivial even
without any communication. So, we can consider the case C ∈ (0, n). For convenience,
we will multiply all inputs (player values vi and cost C) by 2k, and this clearly does
not change the complexity of the problem. That is, we will consider agents with values
ṽi = vi · 2k ∈ {0, ..., 2k− 1} and the cost C̃ = C · 2k ∈ (0, n2k). We denote by kc the integer
such that C̃ ∈ (2kc−1, 2kc ]. Note that kc can be made arbitrarily large by increasing k. In
the rest of the proof we will abuse notations and refer to these normalized values by C and
vi’s.

Lemma 4.3. CCIC(fk) ≤ nkc + n

Proof. The following protocol elicits enough information for computing the outcome of fk
and the desired payments with nkc +n bits: Ask each player if his value is at least C (this
requires n bits). Ask all the players whose values are lower than C to transmit their vi’s
(this requires kc bits per player, i.e., at most n× kc bits). An easy observation is that this
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simple protocol provides us with sufficient information to calculate the payments for all
players.

We shall now prove a lower bound on CC(fk) that will imply the theorem. We prove
the following lemmas:

Lemma 4.4. If C ≤ n
2 , then for large enough kc the communication complexity of deter-

mining whether Σivi ≥ C or whether Σivi ≤ C is at least (n2 − 1) · kc − γn, where γn is a
function of n which is independent of kc, k.

Proof. We shall construct a large fooling set and invoke Theorem 3.4. Consider all the
possible type-profiles (v1, . . . , vn) such that Σivi = C. Obviously for all these type-profiles
Σivi ≥ C. However, any protocol that tries to determine whether Σivi ≥ C cannot
avoid making a distinction between any two such type-profiles for the following reason:
Let v = (v1, . . . , vn) and v′ = (v′1, . . . , v

′
n) be two different such type-profiles. Let j be

a coordinate such that vj 6= v′j . W.l.o.g, assume that vj < v′j . Then, if v and v′ are
undistinguished then so is the type profile v′′ = (v′′1 , . . . , v

′′
n) in which v′′i = v′i for every

i 6= j and v′′j = vj . However, this leads to a contradiction because Σiv
′′
i < C (since the

outcome of the protocol cannot be the same for v and v′′).
Hence, by finding a lower bound L on the number of possible type-profiles (v1, . . . , vn)

such that Σivi = C, we also find a lower bound on the number of bits transmitted by
any protocol that computes C-Public-Goodk. Specifically, logL is a lower bound on the
number of bits transmitted by any such protocol (see Observation 3.2). In Lemma B.1 in
the appendix, we show that logL ≥ (n2 − 1)kc − n · log n (here we use the assumption that
C ≤ n

2 ) which completes the proof.
The complexity of determining whether Σivi ≤ C is proved analogously.

Lemma 4.4 allows us to bound CC(fk) from below when C ≤ n
2 . That is, we have that

when C ≤ n
2 , CC(fk) ≥ (n2 − 1) · kc − γn for some γn independent of kc. Now consider the

case that C > n
2 . Clearly, finding whether Σivi ≥ C is equivalent to figuring out whether

n − Σivi ≤ n − C. Thus, our problem now is equivalent to the problem in which every
player has the value 1−vi and the players are trying to figure out whether the sum of their
values is at most n−C (note that n−C ≤ n

2 as in this case C > n
2 ). This problem is just

as hard as the original problem, as shown by the second part of Lemma 4.4.
Finally, the theorem follows by plugging in the lower bound on CC(fk) and the upper

bound on CCIC(fk) (from Lemma 4.3), showing that their ratio is at most

nkc + n

(n2 − 1) · kc − γn
(3)

which converges (when n ≥ 3) to 2 n
n−2 as kc goes to infinity.

15



5 Main Result: A Linear Lower Bound

In order to prove a lower bound of n we must identify a social-choice function f such that
CC(f) is smaller than CCIC(f) by a factor of n. In our proof, we will construct an ad-hoc
n-player social-choice function in which the communication cost of incentive compatibility is
large. We are not aware of a natural economic interpretation for this social-choice function,
and its main goal is for proving the existence of functions with large overhead. We leave
the question whether there are “natural” problems with large information overhead open.

As a warm-up, we start by presenting our construction for 2 players.

5.1 Another Lower Bound for 2 Players

Recall that we have seen that for the public good setting with 2 players the communication
cost of incentive compatibility is essentially 2, but the lower bound used in that proof does
not extend to a linear lower bound for the n players case. In fact, the n-player public-good
problem is such that the communication cost of incentive compatibility is never greater
than 6 + ε.

We will now present a construction that does extend to n players, and thus obtains
a linear lower bound. We will start by presenting the construction and the proof for 2
players, and then we will describe the general construction and proof.

Consider the 2-player social-choice function depicted in Figure 2. As before, we have
2 players now denoted by A,B. Each player holds a value between [0, 1] represented by
a k-bit string, i.e., vi = ti · 2−k for an integer ti ∈ {0, ..., 2k − 1}. Player i’s utility from
winning is vi, and his utility from losing is 0. Player A wins if and only if vB ≥ 1/2 and
vA ≥ vB − 1/2. Similarly, player B wins if and only if vA ≥ 1/2 and vB ≥ vA − 1/2. We
shall refer to fk as the “Not-Too-Fark” social-choice function. It is easy to check that
Not-Too-Fark is monotone and thus it is implementable.

Proposition 5.1. Assume n = 2. For any ε > 0 and for k large enough, the communi-
cation cost of incentive compatibility for the social-choice function Not-Too-Fark is at
least 2− ε.

Proof. Let fk =Not-Too-Fark. By Observation 3.3 it holds that CC(fk) ≤ k+2 as there
are 4 outcomes in the range (any subset of the player can win).

We show below that CCIC(fk) ≥ 2k − 2. From this we derive that CCIC(fk)
CC(fk)

≥ 2k−2
k+2 =

2 − 6
k+2 . Clearly, as this is a monotone function of k that converges to 2, for any ε > 0

there is a k such that it is larger than 2− ε. We next derive the promised lower bound on
CCIC(fk).

Claim 2. For n = 2, CCIC(Not-Too-Fark) ≥ 2k − 2.
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Figure 2: The description of the 2-players Not-Too-Fark social-choice function. For every profile
of values for the players, the figure shows whether A wins, B wins or both. In all other profiles both
lose. The hardness of this example is due to the fact that every two profiles of values for which the
two players win (e.g., x and y in the picture) is associated with different payments. Note that the
payments are determined by a projection on the diagonals defined by the social-choice function.

Proof. Consider the type-profiles (v1, v2) such that both v1 and v2 are at least 1/2. Observe,
that there are exactly 22k−2 such type-profiles, and that both players win for each such
type profile.

We shall prove that for every two such type-profiles v = (v1, v2) and v′ = (v′1, v
′
2) it

must hold that any communication protocol that computes incentive-compatible payments
outputs p(v1, v2) 6= p(v′1, v

′
2). Therefore, any such protocol has at least 22k−2 outcomes in

its range. By Observation 3.2 this implies that the minimal number of bits that must be
transmitted by any such protocol is at least log(22k−2) = 2k − 2.

W.l.o.g., assume that v1 6= v′1. From Observation 3.1 (see also Figure 2) one can deduce
that in the event that both players win the payment of each is the other’s player’s value
minus 1/2. We shall show that p2(v1, v2) 6= p2(v

′
1, v
′
2). Clearly p2(v1, v2) = v1 − 1/2 (the

minimal value for which 2 would win). Similarly, p2(v
′
1, v
′
2) = v′1 − 1/2. Since v1 6= v′1 we

conclude that p2(v1, v2) 6= p2(v
′
1, v
′
2).

The theorem follows.

5.2 A Linear Lower Bound for n Players

We are now ready to prove the main theorem of this paper. The social-choice function for
which we shall prove a lower bound of about n is an extension of Not-Too-Fark presented
above for 2 players, to the n-players setting.
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Definition 7 (Not-Too-Fark).
Input: valuations v0, ..., vn−1 ∈ N represented by strings of k bits.
Output: A set of winning players from N . Player i wins if one of the following happen:

1. vj ≥ 1/2 for every j ∈ N .

2. vj ≥ 1/2 for every j ∈ N \ {i} and vi ≥ vi+1 (mod n) − 1/2.

We first observe that the function Not-Too-Fark is implementable, and therefore the
communication cost of incentive compatibility is well defined. Indeed, it is easy to see that
if player i wins in Not-Too-Fark and increases its bid, i will still win.

Observation 5.2. The social-choice function Not-Too-Fark is monotone.

We are now ready to present the main result, a linear lower bound on the communication
cost of incentive compatibility for a single-parameter SCF. This is done by showing that
computing both the function and the payments (CCIC(f)) requires lots of communication
since there are many different payment-vectors the mechanism should distinguish between;
also, computing the function alone (CC(f)) requires a low amount of communication the
players announce whether their values is at least 1/2 using 1 bit each, and the additional
relevant information is held by up to two players (vi and vi+1 for some i).

Theorem 5.3. For any ε > 0 and for k large enough, the communication cost of incentive
compatibility for the social-choice function Not-Too-Fark is at least n− ε. In particular,
CCIC(Not-Too-Fark) ≥ n(k − 1) and CC(Not-Too-Fark) ≤ n+ k + 1.

Proof. Let fk =Not-Too-Fark. We show below that CCIC(fk) ≥ n(k − 1) (Claim 3)

and that CC(fk) ≤ n + k + 1 (Claim 4). From these two facts we derive that CCIC(fk)
CC(fk)

≥
n(k−1)
k+n+1 = n− n(n+2)

n+k+1 . Clearly for any ε > 0 there is a k such that this is larger than n− ε.
We next derive the promised bounds on CCIC(fk) and CC(fk).

Claim 3. CCIC(Not-Too-Fark) ≥ n(k − 1).

Proof. There are 2n(k−1) type-profiles (v0, . . . , vn−1) such that each vi is at least 1/2. For
all these type-profiles all players win. Let (v0, . . . , vn−1) and (v′0, . . . , v

′
n−1) be two different

such type-profiles. Let p(v0, . . . , vn−1) and p(v′0, . . . , v
′
n−1) be the incentive-compatible

payments outputted by a communication protocol for these two type-profiles. We shall
show that these two payment vectors must be different. This is derived from the fact that
pi(v0, . . . , vn−1) = vi+1 (mod n) − 1/2, and similarly,
pi(v

′
0, . . . , v

′
n−1) = v′i+1 (mod n) − 1/2. Hence, if any coordinate j ∈ {0, 1, ..., n − 1} is such

that vi 6= v′i this implies that pj−1(v0, v2, ..., vn−1) 6= pj−1(v
′
0, v
′
2, ..., v

′
n−1). Therefore, any

protocol that computes incentive-compatible payments has at least 2n(k−1) outcomes in the
range of fk and thus requires at least n(k−1) bits (by Observation 3.2). We conclude that
CCIC(fk) ≥ n(k − 1).
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Claim 4. CC(Not-Too-Fark) ≤ n+ k + 1.

Proof. We show that CC(fk) ≤ k + n + 1 by exhibiting a communication protocol that
computes fk and only requires k + n + 1 bits: First, each player i transmits a single bit
bi that indicates whether his value is at least 1/2 (i transmits 1 if vi ≥ 1/2). If bi = 1
for all i then all players win. If for two or more players bi = 0 then all players lose. If
there is a player j such that bj = 0 and for all other players it holds that bi = 1 then
all other players (but j) lose. In this case, in order to determine whether player j wins,
player j + 1 (mod n) transmits all of his bits. Player j (who now knows vj+1 (mod n))
checks whether vj ≥ vj+1 (mod n) − 1/2 (in which case player j wins). He now broadcasts
an additional bit informing the others of the result (1 indicating “I win” and 0 indicating
“I lose”). Observe, that overall k+n+ 1 bits were transmitted, and that the protocol does
indeed compute Not-Too-Fark. So, CC(fk) ≤ k + n+ 1.

The theorem follows.

6 Discussion: The General Case

We have shown that, subject to the natural normalization assumption (Definition 2), the
communication cost of computing payments that support an outcome in equilibrium can
be significant. Specifically, we have shown that this communication overhead cost can be
linear in the number of players. An obvious open question is that of extending our lower
bound to the case in which the normalization assumption is removed (or prove that no
such lower bound is attainable in that case).

Recall the 2-player public good setting discussed in Section 2. This setting played an
important part in advancing our understanding of the communication cost of incentive
compatibility. It was through this setting that we were able to prove a tight result of 2
for 2-player settings. For this simple setting, we now prove a surprising result: if the nor-
malization assumption is removed then the communication cost of incentive-compatibility
in the 2-player public-good setting is negligible. In fact, similar constructions to the one
presented in the next subsection imply that social-choice functions like the one used to
prove our linear lower bound for n-player settings (Theorem 5.3) will not be helpful in
extending our lower bound to the general case. At this point, it is unclear to us whether
this is an evidence for the existence of a sub-linear upper bound for the general case, or
merely implies that inherently different constructions are required to obtain a linear lower
bound for the general case.

6.1 Removing the normalization assumption.

Let us revisit the 2-player public-good setting, where the values of the two players are once
again in {0, . . . , 2k−1} and C = 2k. As explained in Section 4.2, for each pair of values
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(v1, v2) for which both players “win” (meaning v1 + v2 ≥ 0), the players are required to
pay C − v2, and C − v1, respectively. If the two players “lose”, then they are both charged
0. If we no longer insist on the normalization assumption, this implies that for every value
of v1, we can force player 2 to pay, in addition to what he was required to pay so far, and
regardless of whether he wins or loses (and of his value v2), some extra amount xv1 that
can only depend on the value of the other player. By monotonicity, as long as xv1 depends
only on v1 the resulting mechanism is incentive compatible.

Consider the following incentive-compatible payment scheme for every pair of values
(v1, v2) for which both players win, the players are required to pay C−v2, and C−v1+xv1 ,
respectively, where xv1 = v1. Observe that if both players win, player 1’s payment is C−v2,
while player 2’s payment is always C. In contrast, if both players lose, then player 1 is
charged 0, but player 2 is charged xv1 = v1.

A protocol. The above suggests the following simple protocol:

1. Find out the value of min{v1, C − v2}. Denote this value by α.

2. If α 6= v1, then α = C − v2, and so v1 ≥ C − v2 (which means that v1 + v2 ≥ C).
Then, output “Build”, charge player 1 an amount of C − v2, and charge player 2 an
amount of C.

3. Otherwise, it must be that α = v1, and v1 < C − v2 (which means that v1 + v2 < C).
Then, output “Do Not Build”, do not charge player 1, and charge player 2 an amount
of v1.

Naor shows that computing the minimum of two values in {0, . . . , 2k−1} (i.e., who has
the highest value and the actual value of the second highest) can be done via transmission
of k+O(log k) bits (see proof in Babaioff et al. (2008)). Observe that as both v1 and C−v2
are such numbers, this implies that the protocol above only requires the transmission of
k +O(log k) bits (once we learn α = min{v1, C − v2} we have all the information we need
to determine the outcome and compute payments).

Insignificant communication cost of incentive-compatibility. Recall that we showed
a lower bound of roughly 2k for computing payments if the normalization assumption holds.
Hence, the removal of this assumption can be allowed for mechanisms that are significantly
more frugal in terms of communication. Specifically, determining the winner and computing
supporting payments can be done with k + O(log k) bits, giving an upper bound on the
communication cost of 1 +O( log kk ).

7 Open Questions and Directions for Future Research

We leave the following open questions:
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1. The obvious question left open is proving lower bounds on the communication cost
of incentive compatibility for the non-normalized case (see discussion in Section 6),
or exhibiting a sub-linear upper bound for this case.

2. A big open question posed by Fadel and Segal (2009) is determining the commu-
nication cost of incentive compatibility in multi-parameter domains. Recall that
for proving our main impossibility result, we constructed an environment with one-
dimensional types where the communication cost is linear; with multi-dimensional
types, one may hope to prove even stronger lower bounds. (Note that FS proved a
linear upper bound for single parameter environments but only an exponential upper
bound for the general case.) This would be a challenging task, as the characteri-
zation of implementable social-choice functions in multi-dimensional domains is less
well understood.

3. It was shown by Lahaie and Parkes (2008) (LP) that in some multi-parameter welfare-
maximization settings, the näıve VCG protocol that computes the efficient outcome
n + 1 times in sequence (removing one player at a time) is asymptotically optimal.
However, in such settings there could be other incentive-compatible normalized mech-
anisms that can perform significantly better. It would be interesting to strengthen
the result of LP by exhibiting a welfare-maximizing social-choice function for which
not only does a linear lower bound on VCG mechanisms exists, but VCG mechanisms
are the only incentive-compatible normalized mechanisms (in the spirit of the work
by Green and Laffont (1977)).
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A Communication Complexity - Formal Definition

Consider environments with n players, each player i privately holds a piece of information
vi (his type), and the goal is compute a function f(v1, ..., vn). Informally speaking, the
communication complexity of f is the minimal number of bits required (in the worst case)
to compute this function. For a formal definition, we start by defining communication
protocols using binary trees, where at each node some player needs to decide what bit to
communicate.

Definition 8. A communication protocol P with a set of players N , type space V =
V1 × ...× Vn, and an outcome space O is a binary tree with a set of nodes U and a set of
leaves L ⊂ U , where:

• The set of internal nodes U \ L is partitioned to n subset U1, ..., Un, one per each
player. Each set Ui represents the nodes where decisions are made by player i.

• Each leaf l ∈ L is labeled with an outcome o(l) ∈ O

• Each player i has a strategy function that maps his type to a decision in each one of
his decision nodes, σi : V → {0, 1}Ui.

For every decision profile s = (s1, ..., sn) ∈
∏

i∈N{0, 1}Ui, let p(s) denote the leaf that is
reached when each player i uses the decisions specified in si.

Finally, we say that a protocol P computes the function f : V → O when for every
v ∈ V we have f(v) = o(p(σ(v))).

The cost of a protocol P is the height of its binary tree, that is, the maximum number
of edges between the root node and a leaf. The height of the tree represents the longest
worst-case execution of the protocol. The communication complexity of a function is the
minimal cost of a protocol that computes this function:

Definition 9. The communication complexity CC(f) of a function f : V → O is defined
as the minimal cost of a protocol P that computes f , over all protocols that compute f .
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B Missing proofs

Lemma B.1. In the setting described in the proof for Lemma 4.4 in Theorem 4.2, the
number of valuation profiles L where Σivi = C holds that:

logL ≥ (
n

2
− 1)kc − n · log n (4)

Proof. We first consider the case where C ≤ 2k − 1. We consider the following family of
type-profiles: v1 = C − 2kc−1, v2 = ... = vn

2
−1 = 0, and Σn

i=n
2
vi = 2kc−1. Observe, that any

type-profile in this family is such that Σn
i=1vi = C. How many such type-profiles are there?

There are
(2kc−1+n

2
n
2

)
ways to distribute 2kc−1 between n

2 + 1 players. (Recall that we study

a discrete environment.) This is bounded from below by 2(kc−1)n2

(n
2
)
n
2

(as
(
a+b
b

)
≥ ab

bb
). So,

any protocol that determines whether Σivi ≥ C needs to transmit at least log(2
(kc−1)n2

(n
2
)
n
2

) =

n
2kc −

n
2 (log(n)) bits.

What if C ≥ 2k − 1? We will now describe another set of valuations as our fooling
set. We will distribute 2k − 1 to players n

2 + 1, ..., n, and distribute the rest of the cost
C − (2k − 1) to players 1, ..., n2 in some arbitrary way. We first argue that we can indeed
distribute C−(2k−1) to players 1, ..., n2 , namely, this amount does not exceed the maximal
total value they can have. Indeed, the total possible value of n

2 players is (2k − 1) · n2 , and
for large enough k it holds that (2k − 1) · n2 ≥ 2k · n2 − (2k − 1) ≥ C − (2k − 1).

So now we are left with a cost of C ′ = 2k − 1 to distribute between agents n
2 + 1, ..., n.

We can now achieve L by looking at the different ways to distribute C ′ between players
n
2 + 1, ..., n, i.e., such that Σn

i=n
2
+1vi = 2k − 1. How many such type-profiles are there?

There are
((2k−1)+n

2
−1

n
2
−1

)
ways to distribute C ′ between n

2 players. Now

(
(2k − 1) + (n2 − 1)

n
2 − 1

)
≥ (2k − 1)(

n
2
−1)

(n2 − 1)(
n
2
−1) (5)

So, any protocol that determines whether Σivi ≥ C needs to transmit at least a logarith-
mic factor of the right hand side of Eq.(5), which is (n2 − 1) log(2k− 1)− (n2 − 1) log(n2 − 1).
By the conditions of Lemma 4.4 it holds that n

2 · 2
k ≥ C. Now n

2 · 2
k ≥ C ≥ 2kc−1

thus 2k ≥ 2kc
n . We conclude that log L ≥ (n2 − 1) log(2

kc

n − 1) − (n2 − 1)(log(n2 − 1)) ≥
(n2 − 1)kc − (n2 − 1) · (2 log(n)) ≥ (n2 − 1)kc − n · log(n)
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