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Abstract. We study auctions in which bidders have severe constraints
on the size of messages they are allowed to send to the auctioneer. In
such auctions, each bidder has a set of k possible bids (i.e. he can send
up to t = log(k) bits to the mechanism). This paper studies the loss
of economic efficiency and revenue in such mechanisms, compared with
the case of unconstrained communication. For any number of players,
we present auctions that incur an efficiency loss and a revenue loss of
O( 1

k2 ), and we show that this upper bound is tight. When we allow
the players to send their bits sequentially, we can construct even more
efficient mechanisms, but only up to a factor of 2 in the amount of
communication needed. We also show that when the players’ valuations
for the item are not independently distributed, we cannot do much better
than a trivial mechanism.

1 Introduction

Computers on the Internet are owned by different parties with individual pref-
erences. Trying to impose protocols and algorithms on them in the traditional
computer-science way is doomed to fail, since each party might act for its own
selfish benefit. Thus, designing protocols for Internet-like environments requires
the usage of tools from other disciplines, especially microeconomic theory and
game theory. This intersection between computer science theory and economic
theory raises many interesting questions. Indeed, much theoretical attention was
given in recent years to problems with both game theoretic and algorithmic
aspects (see e.g. the surveys [10, 18, 5]). Many of the algorithms for such dis-
tributed environments are closely related to the theory of mechanism design
and in particular to auction theory (see [6] for comprehensive survey about auc-
tions). An auction is actually an algorithm, that allocates some resources among
a set of players. The messages (bids) that the players send to the auctioneer are
the input for this algorithm, and it outputs an allocation of the resources and
payments for the players. The main challenge in designing auctions is related
to the incomplete information that the designer has about the players’ secret



data (for example, how much they are willing to pay for a certain resource). The
auction mechanism must somehow elicit this information from the selfish par-
ticipants, in order to achieve global or “social” goals (e.g. maximize the seller’s
revenue). Recent results show that auctions are hard to implement in practice.
The reasons might be computational (see e.g. [12, 8]), communication-related
([13]), uncertainty about timing or participants ([4, 7],) and many more. This,
and the growing usage of auctions in e-commerce (e.g. [14, 21, 15]) and in various
computing systems (see e.g. [11, 19, 20]) led researchers to take computational
effects into consideration when designing auctions.

Much interest was given in the economic literature to the design of optimal
auctions and efficient auctions. Optimal auctions are auctions that maximize the
seller’s revenue. Efficient auctions maximize the social welfare, i.e. they allocate
the resources to the players that want them the most. A positive correlation
usually exist between the two measures: a player is willing to pay more for an
item that is worth a higher value to her. Nevertheless, efficient auctions are
not necessarily optimal, and vice versa. In our model, each player has a private
valuation for a single item (i.e. she knows how much she values the item, but
this value is a private information for herself). The goal of the auction’s designer
(in the Bayesian framework) is, given distributions on the players’ valuations,
to find auctions that maximize the expected revenue or the expected welfare,
when the players act selfishly. For the single item case, these problems are in
fact solved: the Vickrey auction (or the 2nd-price auction, see [17]) is efficient;
Myerson, in a classic paper ([9]), fully characterize optimal auctions when the
players’ valuations are independently distributed. In the same paper, Myerson
also shows that Vickrey’s auction (with some reservation price) is also optimal
(i.e. revenue maximizing), when the distribution functions hold some regularity
property. Optimal auctions and efficient auctions were studied lately also by
computer scientists (e.g. [4, 16]). Recently, Blumrosen and Nisan ([1]) initiated
the study of auctions with severely bounded communication, i.e. settings where
each player can send a message of up to t bits to the mechanism. In other words,
each bidder can choose a bid out of a set of k = 2t possible bids. The players’
valuations, however, can be any real numbers in the range [0, 1].

Here, we generalize the main results from [1] for multi-player games. We also
study the effect of relaxing some of the assumptions made in [1], namely the
simultaneous bidding and the independence of the valuations.

Severe constraints on the communication are expected in settings where we
need to design quick, and cheap auctions that should be performed frequently.
For example, if a route for a packet over the Internet is auctioned, we can ded-
icate for this purpose only a small number of bits. Otherwise, the network will
be congested very quickly. For example, we might want to use some unused bits
in existing networking protocols (e.g. IP or TCP) to transfer the bidding infor-
mation. This is opposed to the traditional economic approach that views the
information sent by the players as real numbers (representing these can take
infinite number of bits!). Low communication also serves as a proxy for other
desirable properties: with low communication the interface for the auction is



simpler (the players have a small number of possible bids to choose from), the
information revelation is smaller and only a small number of discrete prices is
used. In addition, understanding the tradeoffs between communication and auc-
tions’ optimality (or efficiency) might help us find feasible solutions for settings
which are currently computationally impossible (combinatorial auctions’ design
is the most prominent example).

Under severe communication restrictions, [1] characterizes optimal and ef-
ficient auctions among two players. They prove that the welfare loss and the
revenue loss in mechanisms with t-bits messages is mild: for example, with only
one bit allowed for each player (i.e. t = 1) we can have 97 percent of the ef-
ficiency achieved by auctions that allow the players to send infinite number of
bits (with uniform distributions)! Asymptotically, they show that the loss (for
both measures) diminishes exponentially in t (specifically O( 1

22t ) or O( 1
k2 ) where

k = 2t). These upper bounds are tight: for particular distribution functions, the
expected welfare loss and the expected revenue loss in any mechanism are Ω( 1

k2 ).

In this work, we show n-player mechanisms that, despite using very low
communication, are nearly optimal (or nearly efficient). These mechanisms are
an extension of the “priority-games” and “modified priority-games” concepts
described in [1], and they achieve the asymptotically-optimal results with dom-
inant strategies equilibrium and with individual-rationality constraints (see for-
mal definitions in the body of the paper). For both measures, we characterize
mechanisms that incur a loss of O( 1

k2 ), and we show that for some distribution
functions (e.g. the uniform distribution) this bound is tight.

We also extend the framework to the following settings:

– multi-round auctions: By allowing the bidders to send the bits of their
messages one bit at a time, in alternating order, we can strictly increase the
efficiency of auctions with bounded communication. In such auctions, each
player knows what bits where sent by all players up to each stage. However,
we show that the same extra gain can be achieved in simultaneous auctions
that use less than double amount of communication.

– Joint distributions: When the players’ valuations are statistically depen-
dent, we show that we cannot do better (asymptotically) than a trivial mech-
anism that achieves an efficiency loss of O( 1

k
). Specifically, we show that for

some joint distribution functions, every mechanism with k possible bids in-
curs a revenue loss of at least Ω( 1

k
).

– Bounded distribution functions: We know ([1]) that we cannot con-
struct one mechanism that incurs a welfare loss of O( 1

k2 ) for all distribution
functions. Nevertheless, if we assume that the density functions are bounded
from above or from below, a trivial mechanism achieves results which are
asymptotically optimal.

The organization of the paper is as follows: section 2 describes the formal
model of auctions with bounded communication. Section 3 gives tight upper
bounds for the optimal welfare loss and revenue loss in n-player mechanisms.
Section 4 studies the case of bounded density functions and joint distributions.
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0 1

0 B wins and pays 0 B wins and pays 0

1 A wins and pays 1

3
B wins and pays 2

3

Fig. 1. A matrix representation for a mechanism with two possible bids. E.g., when
Alice bids ′′1′′ and Bob bids ′′0′′, Alice wins the item and pays 1

3
.

Finally, section 5 discusses multi round auctions. All the omitted proofs can be
found in the full version ([2]).

2 The Model

We consider single item, sealed bid auctions among n risk-neutral players. Player
i has a private data (valuation) vi ∈ [0, 1] that represents the maximal payment
he is willing to pay for the item. For every player i, vi is independently drawn

from a density function fi

(∫ 1

0
fi(v)dv = 1

)
which is commonly known for all

participants. The cumulative distribution for player i is Fi. Throughout the
paper we assume that the distribution functions are continuous and always pos-
itive. We also assume a normalized model, i.e. players’ valuations for not having
the item are zero. The seller’s valuation for the item is zero, and the players’
valuations depend only on whether they win the item or not (no externalities).

Players aim to maximize their utilities, which are quasi-linear, i.e. the utility
of player i from the item is vi − pi when pi is his payment.

The unique assumption in our model, is that each player can send a message
of no more than t = lg(k) bits to the mechanism, i.e. players can choose one of
k possible bids (or messages). Denote the possible set of bids for the players as
β = {0, 1, 2, ..., k−1}. In each auction, player i chooses a bid bi ∈ β. A mechanism
determines the allocation and payments given a vector of bids b = (b1, ..., bn):

Definition 1 A mechanism g is composed of a pair (a, p) where:

– a : (β × ... × β) → [0, 1]n is the allocation scheme. We denote the i’th
coordinate of a(b) by ai(b), which is player i’s probability for winning the
item when the bidders bid b. Clearly, ∀i ∀b ai(b) ≥ 0 and ∀b

∑n

i=1 ai(b) ≤ 1.
– p : (β × ... × β) → <n is the payment scheme. pi(b) is player i’s payment

given a bids’ vector b (paid only upon winning).

Definition 2 In a mechanism with k-possible bids, |β| = k. Denote the set of
all mechanisms with k-possible bids among n players by Gn,k.

Figure 1 describes the matrix representation of a 2-player mechanism with two
possible bids (“0” or “1”).

All the results in this paper are achieved with ex-post Individually-Rational
(IR) mechanisms, i.e. mechanisms in which players can always ensure themselves
not to pay more than their valuations for the item (or 0 when they lose). (We
equivalently use the term: mechanisms with ex-post individual rationality.)



Definition 3 A strategy si for player i in a game g ∈ Gn,k describes how the
player determines his bid according to his valuation, i.e. it is a function
si : [0, 1] → {0, 1, ..., k − 1}.

Denote ϕk = {s |s : [0, 1] → {0, 1, ..., k − 1}} (i.e. the set of all strategies for
players with k possible bids).

Definition 4 A real vector c = (c0, c1, ..., ck) is a vector of threshold-values if
c0 ≤ c1 ≤ ... ≤ ck.

Definition 5 A strategy si ∈ ϕk is a threshold-strategy based on a vector
of threshold-values c = (c0, c1, ..., ck), if c0 = 0 and ck = 1 and for every
ci ≤ vi < ci+1 we have si(vi) = i. We say that si is a threshold strategy,
if there exists a vector c of threshold values such that si is a threshold strategy
based on c.

We use the notations: s(v) = (s1(v1), ..., sn(vn)), when si is a strategy for bidder
i and v = (v1, ..., vn). Let s−i denote the strategies of the players except i, i.e.
s−i = (s1, ..., si−1, si+1, ..., sn). We sometimes use the notation s = (si, s−i).

2.1 Optimality Measures

The players in our model choose strategies that maximize their utilities. We are
interested in games with stable behaviour for all players, i.e. such that these
strategies form an equilibrium.

Definition 6 Let ui(g, s) be the expected utility of player i from game g when
bidders use the strategies s, i.e. ui(g, s) = Ev∈[0,1]n (ai (s(v)) · (vi − pi (s(v))))

Definition 7 The strategies s = (s1, ..., sn) form a Bayesian-Nash equilibrium
in a mechanism g ∈ Gn,k, if for every player i, si is the best response for the
strategies s−i of the other players, i.e. ∀i ∀s̃i ∈ ϕk ui(g, (si, s−i)) ≥
ui(g, (s̃i, s−i))

Definition 8 A strategy si for player i is dominant in mechanism g ∈ Gn,k if
regardless of the other players’ strategies s−i, i cannot gain a higher utility by
changing his strategy, i.e. ∀s̃i ∈ ϕk ∀s−i ui(g, (si, s−i)) ≥ ui(g, (s̃i, s−i))

We say that a mechanism g has a dominant strategies equilibrium if for ev-
ery player i there exists a strategy si which is dominant. Clearly, a dominant
strategies equilibrium is also a Bayesian-Nash equilibrium.

Each bidder aims to maximize her expected utility. As mechanisms’ designers,
we aim to optimize “social” criteria such as welfare (efficiency) and revenue.
The expected welfare from a mechanism g, when bidders use strategies s, is the
expected valuation of the winning players (if any).

Definition 9 Let w(g, s) denote the expected welfare in the n-player game g

when bidders’ strategies are s, i.e. w(g, s) = Ev∈[0,1]n (
∑n

i=1 ai (s(v)) · vi)



Definition 10 Let r(g, s) denote the expected revenue in the n-player game g

when bidders’ strategies are s, i.e. r(g, s) = Ev∈[0,1]n (
∑n

i=1 ai (s(v)) · pi (s(v)))

Definition 11 We say that a mechanism g ∈ Gn,k achieves an expected welfare
(revenue) of α if g has a Bayesian-Nash equilibrium s for which the expected
welfare (revenue) is α, i.e. w(g, s) = α ( r(g, s) = α ).

Definition 12 We say that a mechanism g ∈ Gn,k incurs a welfare loss of c,
if there is a Bayesian-Nash equilibrium s in g such that the difference between
w(g, s) and the maximal welfare with unbounded communication is c.

We say that g incurs a revenue loss of c, if there is an individually-rational
Bayesian-Nash equilibrium s in g, such that the difference between r(g, s) and the
optimal revenue, achieved in an individually-rational mechanism with Bayesian-
Nash equilibrium in the unbounded communication case, is c.

Recall that an equilibrium is individually rational, if the expected utility of each
player, given his own valuation, is non negative. The mechanism described in Fig.
1 has a dominant strategy equilibrium that achieves an expected welfare of 35

54
(with uniform distributions). Alice’s dominant strategy is the threshold strategy
based on 1

3 , i.e. she bids “0” when her valuation is below 1
3 , and “1” otherwise.

The threshold strategy based on 2
3 is dominant for Bob. We know ([17]) that

the optimal welfare from a 2-player auction with unconstrained communication
is 2

3 . Thus, the welfare loss incurred by this mechanism is 2
3 − 35

54 = 1
54 .

3 Multi-player Mechanisms

In this section, we construct n-player mechanisms with bounded communication
which are asymptotically optimal (or efficient). We prove that they incur losses
of welfare and revenue of O( 1

k2 ), and that these upper bounds are tight.
It was shown in [1] that “priority-games” (PG) and “modified priority-games”

(MPG) are efficient and optimal (respectively) among all the 2-player mecha-
nisms with bounded communications. For the n-player case, the characterization
of the welfare maximizing and the revenue maximizing mechanisms remains an
open question. We conjecture that PG’s (and MPG’s) with optimally chosen pay-
ments are efficient (optimal). We show that PG’s and MPG’s achieve asymp-

totically-optimal welfare and revenue (respectively). Note, that even though
our model allows lotteries, our analysis presents only deterministic mechanisms.
Indeed, [1] shows that optimal results are achieved by deterministic mechanisms.

Definition 13 A game is called a priority-game if it allocates the item to the
player i that bids the highest bid (i.e. when bi > bj for all j 6= i, the allocation
is ai (b) = 1 and aj (b) = 0 for j 6= i), with ties consistently broken according to
a pre-defined order on the players.

For example, Fig. 1 describes a priority game: the player with the highest bid
wins, and ties are always broken in favour of Bob.



Definition 14 A game is called a modified priority-game if it has an allo-
cation as in priority-games, but no allocation is done when all players bid 0.

Definition 15 An n-player priority-game based on a profile of threshold values’
vectors

−→
t = (t1, ..., tn) ∈ ×n

i=1<
k+1 (where for every i, ti0 ≤ ti1 ≤ ... ≤ tik) is a

mechanism that its allocation is as in a priority game and its payment scheme is
as follows: when player j wins the item for the bids vector b she pays the smallest
valuation she might have and still win the item, given that she uses the threshold
strategy sj based on tj . I.e. pj(b) = min{vj |aj (sj(vj), b−j) = 1}. We denote this
mechanism as PGk(

−→
t ). A modified priority game with a similar payment rule

is called a modified priority-game based on a profile of threshold values’ vectors,
and is denoted by MPGk(

−→
t ).

For example, Fig. 1 describes a priority game based on the threshold values
(0, 1

3 , 1) and (0, 2
3 , 1). When Bob bids 0, the minimal valuation of Alice for which

she still wins is 1
3 , thus this is her payment upon winning, and so on. We first

show that these mechanisms have dominant-strategies and ex-post IR:

Proposition 1 For every profile of identical threshold values’ vectors
−→
t =

(x, x, ..., x), x ∈ Rk+1 and x0 ≤ x1 ≤ ... ≤ xk, the threshold-strategies based
on these threshold values are dominant in PGk(

−→
t ), and this mechanism is ex-

post IR.

3.1 Asymptotically Efficient Mechanisms

Now, we show that given any set of n distribution functions of the players, we
can construct a mechanism that incurs a welfare loss of O( 1

k2 ). In [1], a similar
upper bound was given for the case of 2-player mechanisms:

Theorem 1 [1] For every set of distribution functions on the players’ valua-
tions, the 2 player mechanism PGk(x, y) incurs an expected welfare loss of O( 1

k2 )
(for some threshold values vectors x, y). Moreover, when all valuations are dis-
tributed uniformly, the expected welfare loss is at least Ω( 1

k2 ) in any mechanism.

Here, we prove that n-player priority games are asymptotically efficient:

Theorem 2 For any number of players n, and for any set of distribution func-
tions of the players’ valuations, the mechanism PGk(

−→
t ) incurs a welfare loss of

O( 1
k2 ), for some threshold values vector

−→
t ∈ ×n

i=1<
k+1. This mechanism has a

dominant-strategies equilibrium with ex-post IR.

In the following theorem we show that for uniform distributions, the welfare
loss is proportional to 1

k2 :

Theorem 3 When valuations are distributed uniformly, and for any (fixed)
number of players n, any mechanism g ∈ Gn,k incurs a welfare loss of Ω( 1

k2 ).



Proof. Consider only the case where players 1 and 2 have valuations greater
than 1

2 , and the rest of the players have valuations below 1
2 . This occurs with

the constant probability of 1
2n (n is fixed). For maximal efficiency, a mechanism

with k possible bids always allocates the item to player 1 or 2. But due to
theorem 1, a welfare loss of Ω( 1

k2 ) will still be incurred (the fact that in theorem
1 the valuations’ range is [0, 1] and here it is [ 12 , 1] only changes the constant c).
Thus, any mechanism will incur a welfare loss which is Ω( 1

k2 ).

3.2 Asymptotically Optimal Mechanisms

Now, we present mechanisms that achieve asymptotically optimal expected rev-
enue. We show how to construct such mechanisms and give tight upper bounds
for the revenue loss they incur.

Most results in the economic literature on revenue-maximizing auctions, as-
sume that the distribution functions of the players’ valuations holds a regularity
property (as defined by Myerson [9], see below). For example, only when the val-
uations of all players are distributed with the same regular distribution-function,
it is known that Vickrey’s 2nd-price auction, with an appropriately chosen reser-
vation price, is revenue-optimal ([17, 9, 3]).

Definition 16 ([9]) Let f be a density function, and let F be its cumulative

function. We say that f is regular, if the function ṽ(v) = v − 1−F(v)
f(v) is mono-

tone, strictly increasing function of v. We call ṽ the virtual utility.

We define the virtual utility of all the players, except the winner, as zero. The
seller’s virtual utility is equal to his valuation for the item (zero in our model).
Myerson ([9]) observed that in equilibrium, the expected revenue equals the
expected virtual-utility (i.e. the average virtual utility of the winning players):

Theorem 4 ([9]) Consider a model with unbounded communication, in which
losing players pay zero. Let h be a direct-revelation mechanism, which is in-
centive compatible (i.e. truth telling by all players forms Nash equilibrium) and
individually rational. Then in h, the expected revenue equals the expected virtual
utility.

Simple arguments show (see [1]) that Myerson’s observation also holds for auc-
tions with bounded communication:

Proposition 2 ([1]) Let g ∈ Gn,k be a mechanism with Bayesian Nash equi-
librium s = (s1, ..., sn) and ex-post individual rationality. Then, the expected
revenue of s in g is equal to the expected virtual-utility in g.

Using this property, the revenue optimization problem can be reduced to a
welfare optimization problem, which was solved for the n-player case in theorems
2 and 3. We extend the techniques used in [1] for the n-player case: we optimize
the expected welfare in settings where the players consider their virtual utility
as their valuations (see [2] for the proof). We show that for a fixed n, and for



every regular distribution, there is a mechanism that incurs a revenue loss of
O( 1

k2 ). Again, this bound is tight: for uniform distributions the optimal revenue
loss is proportional to 1

k2 .

Theorem 5 Assume that all valuations are distributed with the same regular
distribution function. Then, for any number of players n, MPGk(

−→
t ) incurs a

revenue loss of O( 1
k2 ), for some threshold values vector

−→
t ∈ ×n

i=1<
k+1. This

mechanism has dominant strategies equilibrium with ex-post IR.

Theorem 6 Assume that the players’ valuations are distributed uniformly. Then,
for any (fixed) number of players n, any mechanism g ∈ Gn,k incurs a revenue
loss of Ω( 1

k2 ).

4 Bounded Distributions and Joint Distributions

In previous theorems, we showed how to construct mechanisms with asymptot-
ically optimal welfare and revenue, given a set of distribution functions. Can
we design a particular mechanism that achieve similar results for all distribu-
tion functions? Due to [1], the answer in general is no. The simple mechanism
PGk(x, x) where x = (0, 1

k
, 2

k
, ..., k−1

k
, 1) incurs a welfare loss of O( 1

k
) and no

better upper bound can be achieved. Nevertheless, we show that if the distri-
bution functions are bounded from above or from below, this trivial mechanism
for two players achieves an expected welfare which is asymptotically optimal.

Definition 17 We say that a density function f is bounded from above (below)
if for every x in its domain, f(x) ≤ c (f(x) ≥ c) , for some constant c.

Proposition 3 For every pair of distribution functions of the players’ valu-
ations which are bounded from above, the mechanism PGk(x, x), where x =
(0, 1

k
, 2

k
, ..., k−1

k
, 1), incurs an expected welfare loss of O( 1

k2 ) .
For every pair of distribution functions which are bounded from below, every
mechanism incurs an expected welfare loss of Ω( 1

k2 ).

So far, we assumed that the players’ valuations are drawn from statistically
independent distributions. Now, we relax this assumption and deal with general
joint distributions of the valuations. For this case, we show that a trivial mech-
anism is actually the best we can do (asymptotically). Particularly, it derives a
tight upper bound of O( 1

k
) for the efficiency loss in 2-player games.

Theorem 7 The mechanism PGk(x, x) where x = (0, 1
k
, 2

k
, ..., k−1

k
, 1) incurs an

expected welfare loss ≤ 1
k

for any joint distribution φ on the players’ valuations.
Moreover, for every k there is a joint distribution function φk such that every
mechanism g ∈ G2,k incurs a welfare loss ≥ c · 1

k
(where c is some positive

constant independent of k).
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1 A, 1

3
B, 3
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Fig. 2. (h1) This sequential game (when A bids first, then B) achieves higher expected
welfare than any simultaneous mechanism with the same communication complexity
(2 bits). The welfare is achieved with Bayesian-Nash equilibrium.

5 Multi-round Auctions

In previous sections, we analyzed auctions with bounded communication in
which players simultaneously send their bids to the mechanism. Can we get
better results with multi-round (or sequential) mechanisms? I.e. mechanisms in
which players send their bids one bit at a time, in alternating order. In this sec-
tion, we show that sequential mechanisms can achieve better results. However,
the additional gain (in the amount of communication) is up to a factor of 2.

5.1 Sequential Mechanisms Can Do Better

The definitions in this section are similar in spirit to the model described in
section 2. For simplicity, we present this model less formally.

Definition 18 A sequential (or multi-round) mechanism is a mechanism in
which players send their bids one bit at a time, in alternating order. In each
stage, each player knows the bits the other players sent so far. Only after all the
bits were transmitted, the mechanism determines the allocation and payments.

Definition 19 The communication complexity of a mechanism is the total amount
of bits which are sent by the players.

Definition 20 A strategy for a player in a sequential mechanism is the way she
determines the bits she transmits, at every stage, given her valuation and given
the other players’ bits up to this stage.
A strategy for a player in a sequential mechanism is called a threshold strategy if
in each stage i of the game, the player determines the bit she sends according to
some threshold value xi; I.e. if her valuation is smaller than this threshold she
bids 0, or bids 1 otherwise.

Denote the following sequential mechanism by h1 (see Fig. 2): Alice sends one
bit to the mechanism first. Bob, knowing Alice’s bid, also sends one bit. When
Alice bids 0: Bob wins if he bids 1 and pays 1

4 ; If he bids zero Alice wins and
pays zero. When Alice bids 1: Bob also wins when he bids 1, but now he pays
3
4 ; If he bids zero, Alice wins again, but now she pays 1

3 .
The communication complexity of this mechanism is 2 (each player sends one

bit to the mechanism). When players’ valuations are distributed uniformly, this
mechanism achieves an expected welfare which is greater than the optimal wel-
fare from simultaneous mechanisms with the same communication complexity:



Proposition 4 When valuations are distributed uniformly, the mechanism h1

above has a Bayesian-Nash equilibrium and an expected welfare of 0.653.

Proof. Consider the following strategies: Alice uses a threshold strategy based
on the threshold value 1

2 , and Bob uses the threshold 1
4 when Alice bids “0” and

the threshold 3
4 when Alice bids 1. It is easy to see that these strategies form a

Bayesian-Nash equilibrium, with expected welfare of 0.653.

The communication complexity of the mechanism h1 above is 2 bits (each
player sends one bit). The efficient simultaneous mechanism, with 2 bits’ com-
plexity, achieves an expected welfare of 0.648 ([1]). Thus, we can gain more effi-
ciency with sequential mechanisms. Note that this expected welfare is achieved in
h1 with Bayesian-Nash equilibrium, as opposed to dominant strategies equilibria
in all previous results.

5.2 The Extra Gain from Sequential Mechanisms is Limited

How significant is the extra gain from sequential mechanisms? The following
theorem states that for every sequential mechanism there exists a simultaneous
mechanism that achieves at least the same welfare with less than double amount
of communication. Note that in sequential mechanisms the players must be in-
formed about the bits the other players sent (we do not take this into account
in our analysis), so the total gain in communication can be very mild. We start
by proving that optimal welfare can be achieved with threshold-strategies.

Lemma 1 Given a sequential mechanism h and a profile of strategies s =
(s1, ..., sn) of the players, there exists a profile of threshold strategies
s = (s1, ..., sn) that achieves at least the same welfare with h as s does.

Theorem 8 Let h be a 2-player sequential mechanism with communication com-
plexity m. Then, there exists a simultaneous mechanism g that achieves at least
the same expected welfare as h, with communication complexity of 2m − 1.

Proof. Consider a 2-player, sequential mechanism h with a Bayesian-Nash equi-
librium, and with communication complexity m (we assume m is even, i.e. each
player sends m

2 bits). Due to lemma 1, there exists a profile s = (s1, s2) of
threshold-strategies that achieves at least the same expected welfare on h as the
equilibrium welfare. Now, we will count the number of different thresholds of
player A: at stage 1, she uses a single threshold. After B sends his first bit, A

also uses a threshold, but she might have a different one for each history, i.e.
22 = 4 thresholds. This way, it is easy to see that the number of thresholds for A

is : αA(m) = 20+22+...+2m−2, and for player B is αB(m) = 21+23+...+2m−1.
Next, we construct a simultaneous mechanism g that achieves at least the same
expected welfare with a communication complexity smaller than 2m − 1. In g,
each player simply “tells” the mechanism within which 2 of the threshold values
his valuations is. The number of bits the two players need for transmitting this
information is:



log(αA(m) + 1) + log(αA(m) + 1) < log(2m−1) + log(2m) = 2m− 1
In the full paper ([2]) we show that the new strategies forms an equilibrium.
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