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Abstract

We consider reallocation problems in settings where the initial endowment of each agent
consists of a subset of the resources. The private information of the players is their value for
every possible subset of the resources. The goal is to redistribute resources among agents to
maximize efficiency. Monetary transfers are allowed, but participation is voluntary.

We develop incentive-compatible, individually-rational and budget-balanced mechanisms for
two settings in which agents have complex multi-parameter valuations, both settings include
double auctions as a special case. The first setting is combinatorial exchanges, where we provide
a mechanism that achieves a logarithmic approximation to the optimal efficiency when valuations
are subadditive. The second setting is Arrow-Debreu markets for a single divisible good, where
we present a constant approximation mechanism. The first result is given for a Bayesian setting,
where the latter result is for prior-free environments.

∗A preliminary version of the results in this paper was presented in ACM EC 2014 under the title ”Reallocation
Mechanisms” and appeared in a 1-page abstract.



1 Introduction

A fundamental problem in economics is the allocation of scarce resources. Initially, resources may
be inefficiently distributed among agents. However, as agents value resources differently, trade
might improve their well being.

When each agent seeks to maximize his own utility, classic economic theory generally predicts
the existence of an “invisible hand”: agents will trade among themselves to maximize their own
utility, and will eventually arrive at an efficient resource allocation. This paradigm fails, however,
in the presence of asymmetric information. Private information may lead to market failures, where
trade does not take place even when it is desirable for all. One influential example is Akerlof’s
market for used cars [1], where the unraveling of markets leads to no trade at all. In this paper we
aim to design mechanisms that will foster trade in such markets, even if resources are distributed
among multiple agents with different interests and partial information.

We focus on exchange economies, where each agent is initially endowed with some resources
and thus agents simultaneously play the role of buyers and sellers. Exchange economies are related
to many real life environments; Individuals hold assets, like real estate, cars and stocks, for which
other individuals have their own preferences. Firms hold other types of assets (e.g., employees, land,
machines, intellectual property) that may possibly be better assigned if more information becomes
available. Numerous examples from the realms of industrial organization and finance fall into this
model, like the dissolving of partnerships, breaking monopolies, merges and acquisitions and other
anti-trust related acts. Of particular interest are structured markets where trade can be coordinated
by centralized mechanisms. One recent example for a centralized large-scale reallocation mechanism
is the FCC’s attempt to reallocate frequencies currently held by TV broadcasters to wireless phone
companies (see [23]). A major challenge in these FCC two-sided auctions is to provide incentives
for the TV broadcasters to relinquish their licenses (see also [3]).

A simpler version of exchange markets are two-sided markets (also known as double auctions,
see, e.g., [28, 29, 12, 20, 19]). In such settings, agents are classified in advance as buyers and
sellers, buyers cannot sell anything and sellers cannot purchase additional items. Two-sided markets
received much attention recently with the emergence of the sharing economy, where many large
scale two-sided platforms became highly popular (examples include Airbnb for short-term lodging,
Uber for transportation and Prosper for personal loans). Our results thus also hold for two sided
markets, which is a special case of our more general exchange framework.

The main goal of this paper is to design markets that enable efficient reallocation of resources.
Technically, this translates to three requirements. The first one is individually rationality : the
participation of the agents is voluntary and at any point they may leave the market and consume
their initial endowments. Thus, the outcome of any individually rational mechanism is a Pareto
improvement in the economy, where agents are expected to be (weakly) better off in the new
allocations. The second requirement is budget balance: the mechanism is not allowed to subsidize
the agents in order to improve the outcome. We distinguish between weakly and strongly budget
balanced mechanisms: in the latter the mechanism is additionally not allowed to burn money1.

The third requirement is truthfulness. We discuss both Bayesian and prior-free models, but all
our mechanisms admit ex-post dominant-strategy equilibria. Even when distributional assumptions
are made, we make minimal use of this knowledge, namely we only require access to statistical
properties like the endowment’s median value2.

1The budget balance requirement is common in the cost-sharing literature (e.g., [24] and [27]) but there the idea
is to charge the participants an amount that suffices to cover the cost of providing the service.

2In fact, using noisy estimations of the medians decreases the performance of our mechanism in a rate proportional
to the noise. Hence, even if we only have a black box access to the distributions, we can use the black box to estimate
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Our reallocation problems are essentially combinatorial auctions where items are initially held
by the players (and not by the auctioneer as usual), hence generalizing models of double auctions.
This adds another layer of complexity; For example, while VCG (Vickrey-Clarke-Groves, see [26])
mechanisms can always be used to maximize welfare in combinatorial auctions, in the presence of
endowments no truthful mechanism can allocate efficiently and remain budget balanced, as we will
shortly see.

While several recent papers considered two-sided markets with single-parameter preferences
([5, 6, 30, 10, 7]), we consider agents that have complex multi-parameter valuations. Designing
mechanisms for multi-parameter settings is one of the main challenges of Algorithmic Mechanism
Design. The additional properties we require (e.g., budget balance) make the design of mechanisms
in our case is even more demanding.

We consider two main settings in this paper. In the first, agents have combinatorial valuations,
where valuations are drawn from distributions that are known to the market planner. We then
explore prior-free environments where agents want to exchange quantities of one, fully divisible
good; Their valuations for the good can be described by any concave real function.

Combinatorial Exchanges

In a combinatorial exchange there are n players and a set of M indivisible, heterogeneous items
(|M | = m). Each player i has a valuation function vi : 2M → R+ that specifies his value for each
possible subset of the items. We assume that each i is non-decreasing and that vi(∅) = 0. Crucially,
we assume that the items are initially distributed among the agents. That is, each agent i holds a
(possibly empty) subset Ei of the items.

Recall that we are looking for truthful mechanisms that reallocate the items in a way that
improves the welfare. Our mechanism should be individually rational, i.e., the utility of each
bidder (from the new allocation + payment) should not be smaller than his value for his initial
endowment. Of course, we avoid subsidies by requiring that the mechanism is weakly budget
balanced.

Let Hn denote the n’th harmonic number, and let t = maxi |Ei| (i.e., the maximal number of
items held by a single player). We are able to show that:

Theorem: There exists a truthful, individually rational, weakly budget balanced, randomized
mechanism that provides an 8 ·Ht-approximation to the optimal welfare if all valuations are sub-
additive3. The only distributional knowledge that the mechanism uses is the median value of the
distribution of the endowment of each player.

In particular, if each bidder is initially endowed with at most one item we get an 8-approximation.
To gain some intuition about the mechanism, let us consider a simpler setting in which one

agent i initially holds all items (that is, Ei = M). Let MEDi denote the median of the value of
the distribution of vi(Ei). Consider the following (incorrect) mechanism: agent i reports whether
he agrees to sell all items for a price of MEDi. If so, we will use VCG to find an optimal allocation
of the items to all agents but agent i, and use the revenue generated from VCG to pay an amount
of MEDi to agent i. If not, agent i keeps the items. Notice that the approximation ratio of this
(incorrect) procedure is constant: if most of the expected optimal welfare is contributed by agent i
then by doing nothing we already get a 2 approximation, and the outcome of any valid mechanism
is a Pareto improvement. On the other hand, if most of the expected optimal welfare is contributed

the medians within an arbitrary precision, and preserve very similar performance guarantees.
3A valuation v is subadditive if for ever two bundles S and T we have that v(S) + v(T ) ≥ v(S ∪ T ).
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by the rest of the agents, then we get a 4 approximation: with probability 1
2 agent i sells his

endowment, and in that case we allocate the items optimally among all agents but agent i.
Of course, the procedure above fails because we cannot guarantee that the revenue of the VCG

mechanism will be at least MEDi. To handle this, we develop a “revenue extracting” procedure
which is the combinatorial-auctions analogue of a second-price auction with a reserve price. In a
second-price auction the auctioneer can put a reserve price r to guarantee revenue of at least r
when the highest value is at least r. We show that in a combinatorial auction with n players there
exists a (deterministic, prior-free) mechanism that guarantees a revenue of at least r if the optimal
welfare is at least Hn · r.4

Our mechanism (for the special case) now works as follows: allow agent i to sell all his items
at price MEDi. If agent i agrees, we use the revenue extraction procedure with a “global reserve
price” r = MEDi to distribute the items among all agents but agent i. We then use the revenue
to pay MEDi to agent i. The mechanism for the general case can be found in Section 3.

Prior-Free Mechanisms: Arrow-Debreu Markets

Our second main technical construction considers the classic exchange model of Arrow and Debreu
[2]. We have a single divisible good and the valuations can be any function with decreasing marginals
(i.e., concave valuations). An easy adaption of the mechanism for combinatorial exchanges guaran-
tees a constant approximation, but the challenge now is to get rid of the distributional assumptions
and develop prior free mechanisms with a constant approximation ratio in the worst case.

From a technical perspective this is a multi-parameter environment for which our machinery
for developing truthful mechanisms (especially prior free ones) is limited. Yet, to our surprise we
were able to come up with a prior-free constant-approximation mechanism:

Theorem: There exists a truthful, prior-free, individually rational, weakly budget balanced, ran-
domized mechanism that provides a constant approximation to the optimal social welfare, as long
as no player is initially endowed with more than 1

8 of the good.

Notice the necessity of the last condition: in markets when, say, one player initially holds all the
good, in the spirit of [25, 21] no prior-free mechanism with a constant approximation ratio exists.

A key idea in the mechanism is to replace the revenue extraction procedure that was used in the
mechanism for combinatorial exchanges with a more subtle one. The new procedure allows us to
take advantage of the specifics of the setting and get a constant approximation ratio. Consider the
special case where one agent i initially holds the whole good. Now, since we assume no distributional
knowledge, we do not know the median value of the endowment of i, but let us assume for now that
we know instead the “mid-supply” price: the price (per fraction) p for which i prefers to sell exactly
half of his endowment. The crux is that since the valuation of i exhibits decreasing marginals, agent
i will agree to sell any amount smaller than half of his endowment at the price. Thus, if we knew
that mid-supply price we could just run VCG with the rest of the agents as well as an additional
dummy buyer that has a value (per fraction) of p for any amount below half of the endowment of
i. Observe that if some agent i′ was allocated fraction x of the good, the VCG payment formula
implies that his payment his at least x · p (since otherwise the dummy buyer can get an additional
amount x of the good). We can now take an amount of x from agent i, assign it to i′ and pay agent
i x · p. The formal mechanism for the general case and its analysis are presented in Section 4.

4If the optimal welfare is smaller than Hn · r, then the mechanism is not required to allocate the items, but if it
does so the revenue is guaranteed to be at least r.
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Conclusions and Future Directions

In this paper we devise welfare-maximizing reallocation mechanisms. We do not know whether the
approximation factors achieved by our mechanisms are optimal. In particular, proving impossi-
bilities on the power of truthful and budget balanced mechanisms for reallocation problems is an
interesting open question.

Our focus in this paper was not computational complexity, but it turns out that our mechanism
for Arrow-Debreu markets does run in polynomial time. However, our mechanism for combinatorial
exchanges does not (see [22, 4] for computational issues in combinatorial exchanges). Developing a
polynomial time mechanism for the latter setting seems hard as in particular it implies a solution to
the notorious problem of developing truthful polynomial time algorithm for combinatorial auctions
with subadditive (and submodular) bidders (see, e.g., [13, 18, 17, 14]).

Several follow-ups to an earlier version of this paper studied approximation mechanisms for
two-sided markets. Colini-Baldeschi et al. [8] gave a constant factor approximation to several
two-sided market Bayesian settings with a single-item supply sellers and unit demand buyers. The
mechanisms in [8] are strongly budget balanced, while the mechanisms in our paper are weakly
budget balanced (i.e., may leave leftover money). Combinatorial two-sided markets were discussed
in [9], where an improved notion for strong budget balance was introduced and used for agents with
restricted subadditive valuations (that is, XOS and additive). Approximately efficient mechanisms
in prior-free two-sided market with identical goods were discussed in [30].

In a different direction, our technique for “combinatorial auction for a global reserve price”
was extended to combinatorial cost sharing [16]: a cost sharing model where there are multiple
non-identical resources and players have combinatorial preferences over them.

Organization

Section 2 defines a general framework which captures all settings we discuss. We study combina-
torial exchanges in Section 3 and Arrow-Debreu markets in Section 4.

2 The Framework

Consider a set of resources M = {1, ...,m} and a set of n agents. Let Ei ⊆ {0, 1}m be the set of
allowed endowments for agent i. Let A ⊆ {0, 1}n×m be the set of allowed allocations of resources
to the agents, where Ai ⊆ {0, 1}m stands for the set of possible allocations to player i.

The valuation of player i is a function vi : Ai ∪ Ei → R+. Let Vi be the set of all possible
valuations of player i, and V = V1 × ... × Vn. We sometimes assume a Bayesian model, where vi
is drawn from Vi according to a distribution Fi, independently from the valuations of the other
agents. The valuations are private information and the endowments are known to the designer.

A (direct revelation) reallocation mechanism consists of an allocation function M : V → ∆(A)
and a payment function p : V → Rn. As agents in our model can be sellers and buyers simultane-
ously, we do not assume that payments are positive; Negative payments mean transfers from the
mechanism to the agents.

All of our mechanisms are dominant-strategy truthful. That is, reporting the true valuations
vi is a dominant strategy for every agent i. Truthful behavior is ex-post (rather than dominant-
strategy in expectation) which allows us, e.g., to ignore distributional beliefs of the agents and
whether they are risk-neutral or not. We require the following:

• Ex Post Individual Rationality. For every allocation and payment (Ai, pi) eventually
allocated to agent i with initial endowment Ei ∈ Ei (after the realization of the valuations
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and the randomness of the mechanism), we have that vi(Ai)− pi ≥ vi(Ei).

• Ex Post Budget Balance. For every v ∈ V of the preferences we have
∑n

i=1 pi(v) = 0. If,
instead, we only have that

∑n
i=1 pi(v) ≥ 0, the mechanism is weakly budget balanced.5

• Approximate Efficiency. We would like to approximate the optimal expected efficiency
with non-strategic agents, OPT = maxA∈AEv∈V

[∑n
i=1 vi(Ai)

]
. A mechanism achieves an α

approximation to the optimal welfare if E[
∑n

i=1 vi(M(v))] ≥ OPT
α (expectation is over the

random coins of the mechanism, if any, and over the valuations v ∈ V ).

3 Combinatorial Exchanges

In this section we consider combinatorial exchanges: there are n agents, each agent i initially holds
a subset Ei of the items. Items are heterogeneous and indivisible. Every agent i has a subadditive
valuation vi, that is, for every two bundles S, T we have that vi(S ∪ T ) ≤ vi(S) + vi(T ). Each vi
is independently drawn from a distribution Fi. However, our mechanism will only require that the
mechanism knows, for each agent i, the median value MEDi for the bundle Ei she initially owns.

Let Hn be the n’th harmonic number (Hn =
∑n

i=1
1
i ) and t = maxi |Ei|. We present a mech-

anism that achieves an 8Ht approximation in this multi-parameter domain. Importantly, if each
player is initially endowed with at most one item we get an 8-approximation.

In the first step of the mechanism, the bidders are randomly partitioned into two sets, “buyers”
and ”sellers”, and each “seller” i is offered to sell his endowment bundle at a price MEDi. Then
we would like to take all the items that were sold and optimally allocate them among the “buyers”
using VCG. The main obstacle is that VCG is not budget balanced. To overcome this we present a
procedure that guarantees (approximate) welfare maximization while guaranteeing some minimal
amount of revenue. Subsection 3.1 describes this procedure and the mechanism itself is in Subsection
3.2.

3.1 Detour: Combinatorial Auctions with Global Reserve

In this subsection, we depart for a while from the general exchange model and study a standard
one-sided combinatorial auction model. Our mechanism for combinatorial exchanges will use the
insights obtained in this subsection.

Consider a standard combinatorial auction with a set M of m heterogeneous items that has to
be allocated to n bidders. Each bidder i has a valuation vi : 2M → R. As usual we assume that
each vi is normalized (vi(∅) = 0) and non-decreasing. While the standard goal in the literature
is to maximize welfare, assuming the auctioneer has no production cost for the items, in our case
the auctioneer has a non-negative cost r of producing all items6. We are interested in truthful and
individually rational mechanisms.

We first observe that there are some simple cases where the auctioneer cannot cover the pro-
duction cost. Denote by OPT the value of a welfare-maximizing allocation of the items in M to
the bidders. Therefore, the interesting case is when OPT > r. Namely, given α ≥ 1, whenever
OPT ≥ α · r the mechanism must allocate some items to the bidders and raise a revenue of at least

5Note that this definition holds for every realization of v (and not only in expectation, which is usually a key for
achieving budget balance in Bayesian domains, e.g., in [11]).

6The items are produced only if a sale is made. Here we assume for simplicity that the cost of producing the first
item is r and the cost of producing any additional item is 0. This corresponds to the case that the production cost
of items is governed by the start-up cost. A more realistic setup assumes a production cost for each item, or more
generally for bundles of items. Indeed, the mechanism of Subsection 3.2 essentially provides a solution for this case.
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r. Else, when OPT < α · r the mechanism is not required to sell the items (but, again, if it does
sell the revenue must be at least r).

The challenge is, of course, to develop such a mechanism with α that is as small as possible. We
do so for α = Hn. We achieve this by relying on the well known observation that VCG generalizes
to maximization of an “adjusted welfare” according to an affine function (see, e.g., [26] for further
details). Specifically, instead of maximizing social welfare, Σivi(Ai), we run a VCG mechanism that
selects an allocation with the highest “adjusted welfare”: we “adjust” the welfare of an allocation
A = (A1, . . . , An) to be Σivi(Ai) −HnA · r, where nA is the number of non-empty bundles in the
allocation A.

If we use VCG payments, we obtain a truthful mechanism. In addition, the mechanism allocates
some items whenever OPT ≥ α · r. To see this, observe that the mechanism allocates some items
only if there is an allocation with a positive adjusted welfare (since the adjusted welfare of the empty
allocation is 0). Thus, all that is left is to prove that when the mechanism allocates some items then
the revenue is at least r. Suppose that the mechanism outputs the allocation A = (A1, . . . , An).
Consider some bidder i with Ai 6= ∅. In the VCG mechanism bidder i pays his “damage to
society”. Observe that the damage to society of bidder i is at least r

nA
: consider the allocation

A′ that allocates each bidder i′ 6= i the same set of items and allocates nothing to bidder i. If
we ignored the preferences of bidder i, we could have chosen the allocation A′ and increase the
adjusted welfare by

(Σi′ 6=ivi′(Ai′)−HnA−1 · r)− (Σi′ 6=ivi′(Ai′)−HnA · r) = HnA · r −HnA−1 · r =
r

nA

I.e., the VCG payment of each bidder i with Ai 6= ∅ is at least r
nA

. Since by definition there are nA
such bidders, the total revenue is at least r, as required.

We conclude that we can design a dominant-strategy truthful mechanism in which a seller can
extract revenue of at least the global reserve r from n buyers whenever the optimal welfare is greater
than r by a logarithmic factor, that is, whenever OPT > Hn · r.

We note that follow-up work has shown connections between our mechanism for combinatorial
auctions with global reserve and cost sharing. In particular, the mechanism that we provide here
gives almost immediately an Hn approximation to the social welfare for the excludable public good
problem. Furthermore, the paper [16] extends our mechanism for more general cost sharing settings.
We refer the interested reader to [16] for more details.

3.2 The Combinatorial Median Mechanism

We can now finally present the Combinatorial Median Mechanism for combinatorial exchanges.
In the first step, we randomly assign agents to roles of sellers and buyers; Since the agents have
sub-additive preferences, we will show that we lose a constant factor in the approximation by doing
that. We then choose sellers with low values (those who reject prices equal to their median values)
and sell their items via a VCG mechanism. We use a methodology that builds on combinatorial
auctions with global reserves to guarantee budget balance. The mechanism runs as follows:

1. Each player is assigned to either group S or group B uniformly at random.

2. Each player i ∈ S will be offered a price equal to MEDi (i.e., the median value of her
endowment). Let Ŝ denote the set of players in S that accepted the price. The total set of
items of players in Ŝ endowments is denoted by EŜ = ∪i∈ŜEi.
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3. Given an allocation A of items in EŜ to players in B, denote for each i ∈ Ŝ by ti the
number of buyers that hold in A at least one item from Ei, i.e., ti = |{j|Aj ∩ Ei 6= ∅}|. Let
cA = Σi∈ŜHti ·MEDi.

4. Run a VCG auction for the items EŜ among the bidders B where we penalize the welfare of
an allocation A by cA, taking into account the endowments of bidders in B. I.e., we find the
allocation A that maximizes: Σi∈Bvi(Ai + Ei)− cA.

5. Consider seller i ∈ Ŝ. If at least one item from his endowment Ei is sold in the VCG auction,
then i is paid MEDi and loses all his endowment. Else, seller i keeps his endowment and is
not paid anything. Each buyer is allocated the items he won in the VCG auction (in addition
to his endowment) and pays his VCG payment.

Generally speaking, the role of the cA’s is to guarantee a lower bound to the revenue, just as in
the combinatorial auction with global reserve. However, the analysis is slightly more complicated.
Recall that t is the maximal endowment size, i.e., t = maxi |Ei|.

Theorem 3.1. The Combinatorial Median mechanism provides an approximation ratio of 8 ·Ht to
the optimal social welfare. It is truthful, ex-post individually rational and weakly budget balanced.

Proof. In the analysis we use the following simple observation:

Claim 3.2. Let v be a subadditive valuation and S a set. Let S1, . . . , St be a partitioning of S such
that ∪rSr = S and Sr ∩ Sr′ = ∅, for every r 6= r′. Let T be the bundle that is composed by adding
each Sr independently at random, with probability at least p. Then, E[v(T )] ≥ p · v(S).

Proof. (of Claim 3.2) We will use the following folklore observation:

Observation 3.3. Let v be a subadditive valuation and S a set. Suppose that each item in S is
added to a bundle T independently with probability at least p. Then, E[v(T )] ≥ p · v(S).

Given v, let M ′ be a set of t items, where each item j corresponds to Sj . We will define a
valuation function v′ on M ′ in the following way: for each U ⊆ M ′, v′(U) = v(∪j∈USj). Observe
that selecting items at random from M ′ and measuring their value according to v′ is exactly like
selecting the bundles S1, . . . , St at random and measuring their value according to v. Thus, since
v′ is subadditive whenever v is subadditive we have that the statement of the claim follows, simply
by applying the observation to v.

Fix some welfare maximizing solution (O1, . . . , On) with welfare OPT . As a warm up, observe
that since the groups of buyers and sellers are chosen uniformly at random, the welfare maximiz-
ing allocation restricted to agents in B, assuming all items are available, has welfare of at least
E[OPT/2].

We now compute the optimal welfare with only agents in B assuming only items from EŜ and
that each buyer in B keeps his endowed items. Note that for every item j, Pr[j ∈ EŜ ] = 1

4 . To
see this, consider agent i for which j ∈ Ei. Agent i is assigned to the sellers group S with exactly
probability 1

2 and agrees to sell with (independent) probability 1
2 since he is offered his median

price.
Fix some buyer i ∈ B: for each item j ∈ Oi, either j ∈ Ei or Pr[j ∈ EŜ ] = 1

4 . Thus, by Claim

3.2, E[vi(Ei + Oi ∩ EŜ)] ≥ vi(Oi)
4 (we invoke the claim since Ei and the items in Oi are added to

the bundle with probability of at least 1
4). By linearity of expectation and recalling that an agent

is in B with probability exactly 1
2 , the optimal welfare with only agents in B assuming only items

from EŜ and that each buyer in B keeps his endowed items is at least E[OPT/8].
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To compute the expected welfare of the allocation of the algorithm, we separately compute the
expected welfare of the buyers and of the sellers. The welfare of the buyers is the optimal allocation
among agents in B where each agent keeps his endowment and allocation A is penalized by cA.
Denote by Q the sum of the medians of players that agreed to sell, and observe that for every A,
cA ≤ Ht ·Q. We will consider the allocation A′ where each buyer i ∈ B is assigned Ei + Oi ∩ EŜ .
This allocation is in the range of the VCG mechanism, thus the welfare of the allocation that
VCG outputs is in expectation at least max(0, E[OPT/8]− E[Ht ·Q]) (because the welfare of the
allocation where no items is allocated is 0).

We now compute the expected welfare of the sellers. In fact, we take into account the welfare
of sellers who declined to sell their items. Since by definition the value vi(Ei) of every seller i that
declined to sell is above his median, we have that the expected welfare of sellers that declined to
sell their items is at least E[Q].

We have that the expected welfare of the allocation that the mechanism outputs is at least
max(0, E[OPT/8]−E[Ht ·Q]) +E[Q]. If E[Q] ≥ E[OPT ]

8Ht
then we are guaranteed an approximation

ratio of at least 8Ht. Else, we get that

E[OPT/8]− E[Ht ·Q] + E[Q] (1)

=
1

8
E[OPT ]− (Ht − 1)E[Q] (2)

>
1

8
E[OPT ]− (Ht − 1)

E[OPT ]

8Ht
=
E[OPT ]

8Ht
, (3)

proving the desired approximation ratio.

We note that although Theorem 3.1 is stated for the general model of combinatorial exchanges,
the same mechanism can clearly be used for two-sided markets, i.e., where agents are divided
in advance to roles of sellers and buyers. In this case, one should just skip the first stage that
randomly assigns agents to roles, and thus improve the approximation ratio by a factor of 2. A
recent paper by Colini-Baldeschi et al. [9] showed how to transform the Combinatorial Median
Mechanism (for 2-sided markets) into a strongly budget-balanced mechanism by giving all the
leftover money to a randomly chosen agent. This proved the existence of a strongly budget balanced,
4Ht-approximation mechanism for 2-sided combinatorial auctions with sub-additive agents.

4 Arrow-Debreu Markets

In this section we give a constant approximation mechanism for a multi-parameter environment
without any distributional assumptions. We consider the following n-agent exchange setting with
a divisible good (the same model was studied in the classic work of Arrow and Debreu [2]): there
is one divisible good and n players. Each player i has a valuation function vi : [0, 1] → R, and for
every x, y we define the marginal valuation vi(x|y) = vi(x+y)−vi(y). We assume that the valuation
functions are normalized (vi(0) = 0), non decreasing, and have decreasing marginal valuations (i.e.,
vi(ε|x) ≥ vi(ε|y) for every ε > 0, y > x).7 Denote the initial endowment of player i by ri, ri ≥ 0,
where Σiri = 1. Observe that given some price p, the supply that a seller i is willing to sell is an
amount xi that maximizes his payoff p · xi − vi(xi|ri − xi).

7When vi(·) is twice differentiable, we simply assume that v
′′
i (x) ≤ 0 for every x.
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Our starting point is the combinatorial median mechanism for combinatorial exchanges. Sim-
ilarly, players are divided into “sellers” and “buyers” (but in a subtler way). The constant ap-
proximation ratio is achieved by replacing the revenue extraction procedure of the combinatorial-
exchange mechanism with a method that allows the separate sale of items. This will be the key
to obtaining a constant approximation in the worst case. We assume that no single player initially
holds a huge chunk of the good; Notice that if, say, one player is initially endowed with all the
good then no dominant-strategy prior-free mechanism can achieve a bounded approximation (such
mechanisms essentially post a price to the agents, and this price may not clear the market, see
[21]).

Theorem 4.1. Suppose that for all i, ri ≤ 1
8 . Then, there exists a truthful, weakly budget balanced

mechanism that provides an expected approximation ratio of 48 in every instance. The theorem
holds for any number of agents and for every profile of preferences satisfying decreasing marginal
valuations.

We first provide a mechanism assuming that the bidders can be divided to 3 groups N1, N2,
N3 where each set Nk is substantial : Σi∈Nk

ri ≥ 1
4 . Later we relax the requirement; we will only

assume that for every i, ri ≤ 1
8 . We need the following definition:

Definition 4.2. Let Nk be a substantial set of bidders. The mid-supply price of Nk is the minimal
price p such that the total amount that bidders in Nk are willing to sell at price p is at least 1

8 .

The mechanism itself is a bit heavy on details, although the basic idea is quite simple. We
therefore start with an informal description, and then move on to a formal one. Initially, we have
an arbitrary division of the bidders into three substantial groups. Select their roles at random so
N1 is the group of buyers, N2 is a set of players that will provide us with statistics, and let N3 be
the set of sellers.

We use the statistics group to compute a mid-supply price p: that is, the price for which agents
in the statistics group are willing to sell half of their total supply (which is at least 1

8 of the good).
Each seller in N3 is asked to report the maximum amount of his endowment that he is willing to
sell at price p. Let t be the total amount that the sellers are willing to sell at price p (in fact, we
have to make sure that t ≤ 1

8 – see the formal description for exact implementation details).
Now, we run the VCG mechanism with the participation of the buyers and an extra buyer with

valuation vd(s) = min{t, s} · p. This bidder is added to ensure compliance with the budget balance
requirement. The set of possible allocations in this VCG mechanism is all allocations of amount
t of the good among the buyers N1 and the extra buyer. Effectively, we show that this amounts
to finding a welfare-maximizing allocation of t fraction of the good among the buyers so that each
buyer that received an amount of x pays at least x · p. We use this money to pay each seller i ∈ N3

a total sum of xi · p, where xi is the part of the endowment that was taken from bidder i. We now
provide a formal description of the mechanism, followed by its analysis.

The Formal Mechanism:

1. Divide the agents into three substantial groups denoted by N1, N2 and N3 based on their
endowments ri.

8

8To accomplish that, greedily add agents to N1 while the sum of the ri’s of agents in N1 is at most 1
8
. Stop adding

agents to N1 when we add an agent that makes an “overflow”: Σi∈N1ri >
1
8
. Since each ri ≤ 1

8
, we also have that

Σi∈N1ri ≤ 1
4
. Continue similarly, only with agents that were not added to N1, to construct N2 and N3.
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2. Select uniformly at random “roles” for the groups N1, N2, N3: players in one group will be
the buyers (without loss of generality, N1), another group will be the statistics group (without
loss of generality, N2), and players in the additional group are the sellers (N3).

3. Agents in N2 report their preferences to the mechanism, and let p be the mid-supply price of
the statistics group N2. Each seller i ∈ N3 reports the amount of good x′i he is willing to sell
at price p. Let t = min{18 ,Σi∈N3x

′
i}.

If Σi∈N3x
′
i ≤ 1

8 , let xi = x′i. If Σi∈N3x
′
i >

1
8 , choose a value xi for each i such that xi ≤ x′i

and Σi∈N3xi = 1
8 .9

4. Run the VCG mechanism to sell t-fraction of the good to the buyers in N1 and to a dummy
buyer, where the valuation of each buyer i ∈ N1 is v′i = vi(s|ri) and the valuation of the
dummy buyer is vd(s) = min{t, s} · p.

5. The output of the mechanism is as follows: each buyer i ∈ N1 pays to the mechanism the
VCG payment of v′i and receives the same amount of good that v′i received (in addition to his
endowment ri). Agents in N2 keep their initial endowment and do not pay anything.

Let t′ ≤ t be the amount of good that the dummy player ended up with in the VCG mecha-
nism. Choose x′′i ’s such that for each i ∈ N3, x

′′
i ≤ xi and Σi∈N3x

′′
i = t− t′, taking the good

first from sellers with lower indices. Each seller i ∈ N3 keeps ri− x′′i of the good and receives
a payment of x′′i · p.

Claim 4.3. The above mechanism is truthful.

Proof. The mechanism is clearly truthful for the statistics group since they never sell nor receive any
amount of the good. The mechanism is also truthful for the buyers since they are just participating
in a VCG mechanism. To show that the mechanism is truthful for the sellers we have to use the
fact that the valuations exhibit decreasing marginals. First, observe that the price p depends only
on the valuations of the statistics group N2. Now, consider some seller i ∈ N3. Seller i reports
at stage 3 a quantity x′i that maximizes his profit x · p + vi(ri − x). Therefore, if she eventually
sells a fraction x′i she has no reason to report a different value. However, at stages 3 and 5 of the
mechanism the quantity that she sells is reduced to xi or x′′i that may gain her a lower profit. By
the way that the mechanism reduces the quantities, reporting any value above x′′i will not affect the
quantity that seller i sells. If seller i reports a value smaller than x′′i , he will sell a quantity smaller
than x′′i ; This smaller quantity cannot gain him a greater profit since the profit is non-decreasing
in x in the range below x′i due to decreasing marginals.10 Finally, we assign agents to the groups
N1, N2 and N3 based only on their shares ri which is public knowledge.

Claim 4.4. The above mechanism is weakly budget balanced.

Proof. Consider a buyer i that received an amount of ti (not including his endowment ri). His
VCG price is at least ti · p, since otherwise we could have considered the same allocation except
that an additional amount of ti of the good is allocated to the dummy bidder. We have that the
total payment is at least (t− t′) · p, which is exactly the amount we have to pay to the sellers.

The next lemma analyses the approximation ratio of the mechanism:

9Formally, order the buyers arbitrarily, and let xi = max{0, 1
8
− Σi′>ix

′
i′} if x′i + Σi′>ix

′
i′ ≥ 1

8
.

10To see this, note that the derivative of x · p is p for every x. Since x′i maximizes profit, and due to the convexity
of vi, for every value x < x′i the derivative of vi(ri − x) is negative with absolute value of at most p. Therefore, the
marginal profit is non-negative for x < x′i. A similar argument holds also when vi is not differentiable.
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Lemma 4.5. The mechanism provides an approximation ratio of 48 for any profile of agents with
decreasing marginal valuations.

Proof. Fix some optimal solution to the original exchange problem (o1, . . . , on). For k ∈ {1, 2, 3},
let Ok = Σi∈Nk

vi(oi). Observe that since each group of bidders plays the role of the buyers with
probability exactly 1

3 , we have that E[O1] = OPT/3. Let p′ be the mid-supply price of N3 and
recall that p is the mid-supply price of N2. Since the statistics group and the sellers group are
chosen at random, with probability at least 1/2 we have that p ≥ p′. We will condition our analysis
on that event and conservatively assume that if p < p′ then the welfare of the allocation that the
mechanism outputs is 0.

Now, if p ≥ p′, the total amount of the good that bidders in N3 are willing to sell is at least 1
8 :

they hold at least 1
4 of the good since N3 is ”substantial”, and at price p′ they are willing to sell

half of it, so surely they will agree to sell that amount at price p ≥ p′. In particular, we have that
Σixi = 1

8 (and thus t = 1/8) with probability at least 1
2 .

Claim 4.6. For every i ∈ N1, let si denote the amount of good bidder i receives in the final
allocation of our mechanism. If t = 1

8 then Σi∈N1vi(si) ≥ O1
8 −

p
8 .

Proof. Consider the allocation that gives each bidder i ∈ N1 an amount of s′i = oi
8 . Since the

valuations have decreasing marginals, the welfare of this allocation is at least Σivi∈N1(s′i) ≥
O1
8 and

no more than 1
8 of the good was allocated to players in N1.

Thus, the welfare of VCG is at least the welfare of (s′1, . . . , s
′
n), but we have to subtract the

contribution of the dummy buyer. His contribution to the welfare is at most his maximum value
(obtained when he is allocated all the t = 1/8): p

8 . Thus, we have that Σi∈N1vi(s
′
i) ≥

O1
8 −

p
8 .

Now notice that the value of bidders in the statistics group N2 is at least p · t = p
8 : they are not

willing to sell 1
8 = t of the good at price p, so their total value for their initial endowment (that

they keep) is at least p · t.
Hence, we have that with probability at least 1

2 (if t = 1
8), it holds that Σi∈N1vi(si)+Σi∈N2vi(si) =

O1
8 −

p
8 + p

8 = O1
8 (where s1, .., sn is the allocation by the mechanism). Recall that E[O1] = OPT

3 ,

and we get that the expected welfare is at least 1
2 ·

E[O1]
8 ≥ OPT

48 , as needed.

We note that although we discuss a model with a divisible good, our result also applies for
reallocating units of a discrete homogenous good among agents. As long as each agent initially
holds at most 1/8 of the units, and that all preferences satisfy decreasing marginal utilities, Theorem
4.1 should hold (up to minor rounding issues).
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