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Abstract

In many economic settings, convex figures on the plane are for sale. For exam-
ple, one might want to sell advertising space on a newspaper page. Selfish agents
must be motivated to report their true values for the figures as well as to report
the true figures. Moreover, an approximation algorithm should be used for guaran-
teeing a reasonable solution for the underlying NP-complete problem. We present
truthful mechanisms that guarantee a certain fraction of the social welfare, as a
function of a measure on the geometric diversity of the shapes. We give the first
approximation algorithm for packing arbitrary weighted compact convex figures.
We use this algorithm, and variants of existing algorithms, to create polynomial-
time truthful mechanisms that approximate the social welfare. We show that each
mechanism achieves the best approximation over all the mechanisms of its kind.
We also study different models of information and a discrete model, where players
bid for sets of predefined building blocks.

1 Introduction

The intersection between Micro-Economic theory and Computer-Science theory raises
many new questions. These questions were studied recently by researchers from both
disciplines (see, e.g., the surveys in [13, 6]). A leading example for a problem in this
intersection is the Combinatorial Auction problem. In a combinatorial auction, a finite
set of heterogenous items is for sale, and each selfish agent has a valuation for every
subset of these items. As the auction designers, we try to find an allocation of the items
among the agents that maximizes the “social welfare” (i.e., a set of disjoint packages
that maximizes the sum of valuations) or at least to find a good approximation.

In this paper, we study a variant of combinatorial auctions: e.g., a newspaper wants
to sell an advertising space on a newspaper page. Agents might have different prefer-
ences about their desired space: the size of the ad, its location on the page, whether its
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figure is rectangular, square, or elliptic etc. Each agent submits a bid for her favorite
figure, and we try to find the allocation that maximizes the social welfare. The underly-
ing packing problem is known to be NP-hard, even for the very simple case of packing
2 � 2 squares ([15]). Thus, we settle for a computationally-efficient mechanisms that
approximate the social welfare.

In our model, the plane (ℜ2) is for sale. Let N be a finite set of agents (
�
N
���

n).
Each agent has a private non-negative valuation vi � ℜ � for a single compact convex1

figure si and for any figure that contains it (other figures have a valuation of 0). Every
agent submits a bid for her desired figure (e.g., an advertiser might want the lower half
of the first page in a newspaper). After receiving all bids, the auctioneer determines a
set of winning agents with disjoint figures and the payment that each agent should pay.
Note that the agents demand figures in fixed locations in the plane, and the auctioneer
cannot translate or rotate them. Bidding for convex figures is common in many real-
life scenarios that involve “geometric” bids, e.g., selling real-estate lots, newspaper ads
and spectrum licenses in different locations. In most existing real-estate or advertising
auctions, agents are forced to bid on predefined disjoint figures. This might result in
inefficient allocations that can be avoided by allowing the agents to bid for arbitrary
figures (which in turn makes the computational problem harder).

Note that the problem addressed in this paper is more than just finding an algo-
rithm with a good approximation ratio. The agents in our model are selfish, and they
may report untruthful information if this is beneficial for them. We want to design
incentive-compatible mechanisms, in which each agent uses a strategy that is best for
her own selfish interest (a dominant strategy), and yet, a certain approximation for the
social welfare is guaranteed. A general scheme for achieving a welfare-maximizing
incentive-compatible mechanism is the family of Vickrey-Clarke-Groves (VCG) mech-
anisms (see [11] for a review). However, for implementing such mechanisms we must
allocate the goods optimally (otherwise it will not be truthful [14]). Thus, since find-
ing the optimal allocation is an NP-hard problem, we must find incentive-compatible
mechanisms that are non-VCG. Almost all the non-VCG mechanisms currently known
are for models where the agents hold a single secret value (single-parameter models)2.

In light of these impossibilities, we assume that each agent is interested in a single
figure. Lehmann et al. [10] initiated the study of the Single-Minded Bidders model
for combinatorial auctions. Our model is unique since the bids have some common
geometric properties (e.g., convexity), and also because we actually auction an infinite
(even uncountable) number of goods (the points in the plane).

We differentiate between two models of information (similar to the differentia-
tion done in [12, 3]) . In the first model, the auctioneer knows which figure each
agent wants, but does not know how much this agent is willing to pay for this figure.
This model is the Known Single-Minded (KSM) model, and this is indeed a “single-
parameter” model. In the second model, called the Unknown Single-Minded (USM)
model, both the figures and the values are unknown. In the KSM model we should
motivate the agents to truthfully declare their true values, where in the USM model the

1Actually we prove our results for a more general model that allows non-convex bids as well, with some
more general restrictions.

2Recent results ([9]) show that in many reasonable settings, essentially no IC mechanisms exists for
multi-parameter models, except the family of weighted VCG mechanisms.



agents might submit untruthful bids both for their desired figures and their values.3

Another differentiation we make is between a continuous and a discrete model. In
the continuous model, each agent is interested in an arbitrary compact convex figure
in ℜ2. For example, if a piece of land is for sale, each agent can draw an arbitrary
figure on the map. In the discrete model, the plane contains predefined atomic building
blocks (or tiles), and each agent is restricted to bids for a set of building blocks which
are contained in some convex figure. For example, if we wanted to resell the island
of Manhattan, the basic building blocks would be street blocks bounded between two
consecutive streets and two consecutive avenues. These blocks are typically convex,
though not necessarily rectangular (e.g., because of the diagonal Broadway Avenue).

Related Work:
Our research relates to a sub-field of Micro-Economics called Mechanism Design,
which studies ways to design mechanisms that encourage agents to behave in a way
that results in some desired global properties (see, e.g., [11]). Nisan and Ronen [14]
introduced this concept to CS by the name Algorithmic Mechanism Design.

Weighted packing of rectangles in the plane was studied in several papers.
Hochbaum and Maass [7] proposed a shifting strategy for a special case of square
packing, and generalizations for arbitrary squares appear in, e.g., [5, 4]. Khanna et al.
[8] used similar methods in a model where axis-parallel rectangles lie in a n � n grid.
They presented an algorithm that runs in polynomial time and achieves an O � log � n ��� -
approximation for the optimal welfare. However, it is an open question whether a better
approximation (and in particular, a constant approximation) exists for this problem.

Our Contribution:
We measure the quality of the approximations achieved by mechanisms in our model
according to an aspect ratio R, which measures how diverse are the dimensions of
the figures demanded by the agents. R is defined as the ratio between the maximal
diameter of a figure and the minimal width of a figure (formally defined in Section 2).
For different families of figures, we construct IC mechanisms, either for the KSM or for
the USM models. This mechanisms are also individually-rational, i.e., agents will not
pay more than they value the figure they receive (if any). Therefore, our approximation
improves as the dimensions of the figures become closer.4

We study three different families of figures: compact convex figures, rectangles,
and axis-parallel rectangles. For convex figures in the USM model, we achieve an

O � R 4
3 � -approximation to the social welfare. If the bids are restricted to rectangles (not

necessarily axis-parallel), we achieve a better approximation of O � R � .
If the agents bid for axis-parallel rectangles, we can use a slight modification of the

algorithm due to Khanna et al. [8] to design an IC mechanism that achieves an approx-
imation ratio of O � log � R ��� (the best known approximation ratio for this problem).

We also present a novel allocation algorithm that achieves an O � R � -approximation
for packing arbitrary compact convex figures, and as far as we know this is the first

3Note that the USM model does not fit into the “single-parameter” definition, since the agents have both
their values and their figures as their secret data.

4For instance, when all figures are disks with the same radius up to a constant, our mechanisms achieve
a constant approximation.



approximation algorithm for this problem. We use this algorithm for constructing an
IC mechanism, with the same approximation ratio, for the KSM model.

The incentive-compatible mechanisms we present for the USM model are based
on a family of greedy algorithms presented by Lehmann et al. � 10� . For standard
combinatorial auctions, Lehmann et al. normalized the values by

�
S
� α, where

�
S
�
is the

number of items in the bundle S and α is some real constant, and then run a simple
greedy allocation algorithm on the normalized values. They showed that choosing
α
� 1

2 guarantees the best polynomial approximation ratio (unless NP
�

ZPP).
We present mechanisms, called α-greedy mechanisms, that normalize the values

using the geometric area of the figures. That is, for α � ℜ we assign a normalized
value of v

qα to a bid with a value v for a figure with a geometric area q. We show

that, somewhat surprisingly, for compact convex figures the optimal value for α is 1
3 ,

resulting an O � R 4
3 � -approximation. The difference between the results of Lehmann et

al. and ours derives from the different divisibility properties of packages in the two
models. In their model, a finite set of goods is traded, and for a package to intersect
“many” disjoint packages, its size must be “large”. However, in our continuous model,
a small package can intersect many disjoint packages.

For our discrete model, we present a mechanism that achieves an O � R 4
3 � approx-

imation. However, if the ratio between the minimal width of a figure and the sizes
of the building blocks (we denote by Q) is smaller than the aspect ratio R, we can
achieve a better approximation of O � R � Qα

�
� , by running the α-greedy algorithm with

α � � log � R �
2log � R � � log � Q � .5

The paper’s organization: Section 2 describes our model. Section 3 describes our
results for the USM model, both for the continuous case and the discrete case. Section
4 presents the results for the KSM model, and Section 5 concludes with a discussion
of future work. All proofs are given in the full version of the paper ([2]).

2 Model

Let B denote the family (set) of bids (figure-value pairs) of the agents6, that is B
�

� � si � vi �
�
i � N � . Let F denote the family of agents figures, that is F

�	�
si
�
i � N � . Given

a family of bids B, we aim to maximize the social welfare, i.e., find a collection of non-
conflicting bids (bids for disjoint figures) that maximizes the sum of valuations. For a
subset C 
 N of agents with disjoint figures, denote the value of C by V � C � � ∑i � C vi.
We denote the set of disjoint figures that achieves the maximal welfare by OPT (to
simplify the notation we assume that there are no ties, so there is a single optimal
solution), i.e.,

V � OPT � � max
C � N �� i � j � C si � s j � /0

V � C �

5Thus, if one can embed the goods of a traditional combinatorial auction as building-blocks in the plane,
such that each agent bids for building-blocks contained in some convex figure, then our approximation
scheme improves the approximation ratio achieved in [10].

6Since all the mechanisms we consider are truthful, we use the same notation for the secret information
and the declared information (bid), except of the IC proofs.



Definition 1 A mechanism consists of a pair of functions � G � P � where:

– G is an allocation scheme (rule) that assigns a figure in T (where T is the set
of compact convex figures in the plane) to every agent such that the figures are
disjoint, i.e. G � B � � T N and for every i �� j in N, G j � B ��� Gi � B � � /0 (where we
denote the figure received by agent i by Gi � B � ).

– P is a payment scheme, i.e. for any B, P � B � � ℜn. Denote the payment paid by
agent i by Pi � B � .

All allocation rules we present in the paper, allocate to an agent either her requested
figure or the empty figure. All the payment rules we consider are normalized, that is,
a losing agent pays zero. Additionally, each agent pays a non-negative payment. We
assume quasi-linear utilities and that the agents have no externalities (the utility for
each agent does not depend on the packages received by the other agents), i.e., the
utility of each agent i is ui � B � � vi � Gi � B ����� Pi � B � . The agents are rational, so each
agent chooses a bid that maximizes her own utility.

A mechanism is incentive-compatible (IC) if declaring their true secret information
is a dominant strategy for all the agents. In the KSM model, it means that for any set
of values reported by the other agents, each agent cannot achieve a higher utility by re-
porting an untruthful value, i.e., � i � B � i � v �i ui ��� si � vi � � B � i �	� ui ��� si � v �i � � B � i � , where
B � i denote the family of all bids except i’s bid . In the USM model, IC means that each
agent’s best strategy is to report both her figure and her value truthfully, regardless of
the other agents’ reports, i.e., � i � B � i � v �i � s �i ui ��� si � vi � � B � i �
� ui ��� s �i � v �i � � B � i � .

An incentive-compatible mechanism is also individually rational (IR) if for any
agent i, bidding truthfully ensures him a non-negative utility. That is, � i � B � i

ui ��� si � vi � � B � i �
� 0.

Geometric definitions:
We state our approximation bounds as functions of few geometric properties of the
family of figures the agents bid for. We use standard definitions of diameter and width
of compact figures in ℜ2:

The diameter dz of a compact set z is the maximal distance between any two points
in the set, i.e. dz

�
maxp1 � p2 � z

� �
p1 � p2

� �
2 (

� �
p1 � p2

� �
2 is the Euclidean distance be-

tween p1 and p2). The width wz of a compact set z is the minimal distance between the
closest pair of parallel lines such that the convex set z lies between them.

Definition 2 Given a family of figures F in ℜ2, the maximal diameter L is the maximal
diameter of a figure in F, and the minimal width W is the minimal width of a figure
in F. The aspect ratio R is the ratio between the maximal diameter and the minimal
width. That is, L

�
maxz � F dz � W

�
minz � F wz � R

� L
W .

The aspect ratio describes how diverse is the family of figures with respect to the fig-
ures’ diameter and width.7 The approximations our mechanisms achieve are asymp-
totic functions of the aspect ratio R.

7For example, if all the figures are disks with the same radius, then R � 1. If we have disks of diameter
10 and 5 � 2 rectangles, then R � 10

2 � 5.



Denote the geometric area of a compact figure z by q � z � . We assume that the di-
ameter, width and area of any agent’s figure are polynomial-time computable. We also
assume that given any two agent’s figures, we can decide if the two figures are disjoint
in polynomial time.8.

The Discrete Model:
In the discrete model, there is a set of atomic building blocks (we call tiles) embedded
in the plane. Each agent desires a bundle of tiles that are exactly the ones that are fully
contained in some compact convex figure, and she reports this figure and her value
for the set of tiles contained in it. We assume that all tiles have similar dimensions
(specifically, each tile contains a disk of some positive diameter W0 and its diameter is
at most 2W0). Two agents are non conflicting if there is no tile which is fully contained
in the two figures they report.

For a given family of bids, we define the width-ratio Q
� W

W0
. The width-ratio gives

an upper bound on the width of any figure, with respect to the size of the tiles. Clearly,
we can assume that Q � 1.

The Greedy Mechanism:
Lehmann et al. [10] presented the following family of greedy mechanisms for combi-
natorial auctions:

Given a family of bids and some function f on the figures, such that f assigns a
positive real value to any non empty figure (w.l.o.g. all figures are non empty), the
greedy allocation algorithm picks an allocation ALG, by the following scheme:
Create a list of the bids sorted from high to low according to their values normalized
by f (i.e., v1

f � s1 � �
v2

f � s2 � ������� � vn
f � sn � ).

While the list is not empty, choose a figure si for which the normalized value is
highest in the remaining list (with a consistent tie breaking). Add i to the allocation
ALG and update the list by removing all bids for figures that intersect si.

The specific algorithm is determined by the choice of the function (or norm) f .
Lehmann et al. suggested using the norm vs s  α for combinatorial auctions, where

�
s
�

is the size of the package s and α is some non-negative constant. We generalize this
method for compact figures in ℜ2 and define the α-greedy algorithm to use the norm

vz
q � z � α , where q � z � is the area of figure z.9

Definition 3 The α-greedy mechanism is a mechanism which uses the α-greedy algo-
rithm as its allocation scheme, where a winning agent i pays according to the following
payment scheme:

Let j be the first agent to win, among all the agents whose figures intersects agent

i’s figure, when the greedy algorithm runs without i. If such j exists, i pays
q � si � α � v j

q � s j � α ,

otherwise i pays 0. Losing agents pay 0.

The properties of the α-greedy mechanisms, proved in [10], also hold in our model:
8Note that for polygons the above assumptions hold, and that any compact convex figure can be approxi-

mated (as good as one wants) by a polygon.
9For example, the 0-greedy algorithm sorts the figures according to their values and the 1-greedy algo-

rithm sorts the figures according to their value per unit of area.



Theorem 4 (essentially due to [10]) For every α, the α-greedy mechanism is polyno-
mial time, individually rational and incentive compatible for agents bidding for com-
pact figures in the USM model.

3 The Unknown Single-Minded Model

This section considers the problem of designing a polynomial-time, individually-
rational and incentive-compatible mechanisms, which guarantee some fraction of the
social efficiency for the USM model. We study three families of figures: convex figures
and rectangles in the continuous model, and convex figures in the discrete model. We
use the α-greedy mechanism to create mechanisms with the desired properties for the
three families. For each family, we find the value of α that optimizes the asymptotic ap-
proximation for the social welfare, over all α-greedy mechanisms. For convex figures
in the continuous model, we show that α

� 1
3 achieves an O � R 4

3 � -approximation for the
social welfare. For rectangles in the continuous model, we improve the above result
and show that α

� 1
2 achieves an O � R � -approximation for the social welfare. Finally,

for convex figures in the discrete model, we show that a careful choise of α as a func-
tion of R and Q, gives an approximation ratio between O � R 4

3 � and O � R � . The proofs of
all above results are based on a single general result presented in the full version [2].

3.1 Convex Figures and Rectangles in the Continuous Model

The following lemma presents a lower bound on the approximation ratio that can be
achieved by α-greedy mechanisms, by presenting two constructions that are in a sense
the hardest inputs for these mechanisms.

Lemma 5 The α-greedy mechanism for compact convex figures achieves an Ω � R2 � 1 � α � �
approximation for any α � 1, and an Ω � R1 � α � -approximation for any α � 0. Therefore,

the α-greedy mechanism for compact convex figures achieves an Ω � R 4
3 � -approximation.

Proof sketch: Each of the lower bounds is achieved by a construction that can be built
for any R large enough. The left part of Figure 1 illustrates the construction used to
prove the Ω � R2 � 1 � α � � bound and the right part is used to prove the Ω � R1 � α � bound. In
the left example, a large rectangle contains Θ � R2 � small disjoint squares with a side of
length W . On the right example, a small disk intersects Θ � R � disjoint triangles, with
equal area of Θ � WL � . In both constructions, there is one figure z (filled by small vertical
lines) that is chosen by the greedy mechanism, while the socially optimal mechanism
chooses a family of disjoint figures (small horizontal lines), each intersects z. The value
of z is chosen such that its normalized value vz

q � z � α is a bit greater than 1, and the rest of
the figures have a normalized value of 1. The value for α that minimizes the worst case

approximation is therefore 1
3 , yielding an Ω � R 4

3 � lower bound. �

Next, we show that the 1
3 -greedy mechanism achieves an O � R 4

3 � -approximation
(which, by the above lemma, is the best over all the α-greedy mechanisms). To prove
this result, we use few elementary geometric properties of convex figures. First, for
any compact convex figure z, q � z � � Θ � dzwz � . Additionally, the perimiter of z (denoted



���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������	�	�		�	�	
�
�

�
�

�������������������� �������������� ������������ ������������ ������������

����������������������������������������������������������������������������
���������� � �  � � !�!�!!�!�!"�"�""�"�" #�##�#$�$$�$ %�%%�%&�&&�& '�''�'(�((�(

)�))�)*�**�*+�++�+,�,,�,-�--�-.�..�./�/�//�/�/0�0�00�0�01�1�11�1�12�2�22�2�2

3�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�33�3�3�3�3�3�3

4�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�44�4�4�4�4�4�4

5�55�55�56�66�66�6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : :
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
< < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < <

W

W

0
0

L/2

L/2

. . . 

. . . 

4W

2W

2W 4W

L/2

W
W

Figure 1: Approximation bounds for the α-greedy mechanism

by pz) is contiguous, and pz
�

Θ � dz � (the constants in both cases are independent of
the figure z). These properties are sufficient for the approximation to hold.

Theorem 6 When agents bid for compact convex figures in the plane with an aspect
ratio R, the 1

3 - greedy mechanism achieves an O � R 4
3 � -approximation, and this is the

best asymptotic approximation achievable by an α-greedy mechanism (for any α). This
mechanism is individually rational and incentive compatible for the USM model, and
it runs in polynomial time.

Proof sketch: By Theorem 4 the mechanism is IR, IC and it runs in polynomial time.
Next, we present the idea behind the proof of the O � R 4

3 � -approximation ratio. By the
definition of the α-greedy algorithm, any figure is either a winner or intersects a winner.
It is the hardest to prove the approximation bound if the set of winners in the optimal
solution OPT is disjoint to the set of winners ALG picked by the α-greedy algorithm.
We map each agent x � OPT to a winner z � ALG that intersects x. We then bound the
sum of values of any disjoint set of agents’ figures that intersects z, by partitioning them
to figures that are contained in z and to figures that are not. We use Hölder inequality
and some simple geometric properties of convex figures to show that the upper bounds
for α

� 1
3 , for both the contained figures and the rest of the intersecting figures, match

the lower bounds presented in Lemma 5. �
If agents are only interested in rectangles (not necessarily axis parallel), than we

can derive a stronger result of an O � R � -approximation for the social welfare. While
the construction of a large rectangle containing Ω � R2 � small rectangles (as presented
in Lemma 5) is still possible, the second construction is not. For rectangles, it is im-
possible for a small rectangle to hit (intersect but not contain) many disjoint rectangles.

Theorem 7 When agents bid for rectangles in the plane with an aspect ratio R, the 1
2

- greedy mechanism achieves an O � R � -approximation for the social welfare, and this
is the best asymptotic approximation achievable by an α-greedy mechanism (for any
α).10 This mechanism is individually rational and incentive compatible for the USM
model, and it runs in polynomial time.

10We actually prove a stronger statement. We show that Ω
=
R > -approximation is the best over all the greedy

mechanisms that sort the bids according to some function of the value and the area only (specifically, this
includes the function vz

q ? z @ α ).



3.2 Convex Figures in the Discrete Model

We now turn to look at the discrete model. We first define the mechanism we use for
the discrete model, we then present the mechanism properties.11

Definition 8 The Discrete Model Greedy Mechanism is a mechanism that given bids
for compact convex figures in ℜ2 in the discrete model, does the following: If Q �
R then it runs the 1

3 -greedy mechanism, and if Q � R then it runs the α � - greedy

mechanism for α � � log � R �
2log � R � � log � Q � .

Theorem 9 Consider that the agents bid for compact convex figures in ℜ2 in the dis-
crete model, with an aspect-ratio R and a width-ratio Q. Then, the Discrete Model
Greedy Mechanism achieves an O � R 4

3 � -approximation for the social welfare. More-
over, when Q � R it achieves a better approximation of O � R � Qα

�
� . This mechanism

achieves the best asymptotic approximation among all the mechanisms that choose α
as a function of R and Q, and in particular it is asymptotically better than the α-greedy
mechanism for any α. Additionally, the mechanism is IR and IC for the USM model,
and it runs in polynomial time.

4 The Known Single-Minded Model

In this section, we present polynomial-time mechanisms for different families of figures
in the Known Single-Minded (KSM) model (where the auctioneer knows the desired
figure of each agent, but does not know her value for the figure). We start by presenting
an auction for general compact convex figures. We achieve an O � R � -approximation for

the social welfare, which is better than the O � R 4
3 � -approximation that we proved for the

USM model. Next, we present a mechanism (based on an algorithm from [8]), which
gives an O � log � R ��� -approximation for axis-parallel rectangles.12

4.1 Mechanisms for Convex Figures

Consider the mechanism called the “Classes-by-Area 1-Greedy Mechanism” (CBA-
1G mechanism) presented in Figure 2. This mechanism divides the bids of the agents
to classes according to the figures’ geometric area, runs a 1-greedy algorithm in each
class, and allocates the figures to agents in the class that achieved the highest result.
From the algorithmic aspect, this is the first algorithm for packing weighted convex
figures that we know of, and it achieves an O � R � -approximation. We use this algorithm
to construct a polynomial-time and IC mechanism with the same approximation ratio
for the social welfare. The payments are exactly the “critical-values” for the agents,
i.e., the minimal declaration for which they still win the auction.

11Note that an agent can manipulate the values of α by affecting R and Q. Therefore, for incentive
compatibility, the mechanism is assumed to know the true values of R and Q.

12This approximation is exponentially better than the approximation ratio we achieve for this problem in
the USM model and than the ratio we achieve for general convex figures in the KSM model.



The Classes-by-Area 1-Greedy (CBA-1G) Mechanism:
Allocation:

Step 1: Divide the given input to m � 2log
�
R � classes according to their area.

A figure s belongs to class c if q
�
s �����W 2 � 2c � W 2 � 2c 	 1 � (for c ��
 0 ������ m � 1 � ).

Step 2: Perform the 1-greedy algorithm per each class. Denote the welfare achieved
by class c by V c.
Step 3: Output the allocation in the class c for which the 1-greedy algorithm achieved
the highest welfare, i.e., c � argmaxc̃ ��� 0 � � � � �m � 1 � V c̃.

Payments:
Denote the winning class as class 1, and the class with the second-highest welfare as
class 2. Let V 1� i � V 1 � vi, and let j be the first figure that intersects figure i and wins,

when we run the greedy algorithm where agent i is removed. Let zi be v jq � i �
q � j � if

such j exists, and 0 otherwise.
A winning agent i pays: P

�
i ��� max 
 V2 � V1� i

� zi � , and any losing agent pays 0.

Figure 2: A mechanism for selling arbitrary convex figures. This mechanism is incentive com-
patible in the KSM model and achieves an O

�
R � -approximation for the social welfare.

The payments in the CBA-1G mechanism are chosen as follows: to win the auction,
each agent should be both a winner in her class and her class should beat all other
classes. Bidding above the value zi in the mechanism’s description, is a necessary and
sufficient condition for agent i to win in her class. However, if agent i bids below
V 2 � V1� i and still wins in her class, her class will definitely lose.

Theorem 10 When the agents bid for compact convex figures in ℜ2 with an aspect
ratio R, the CBA-1G mechanism achieves an O � R � -approximation. This mechanism is
IR and IC for the KSM model13 , and runs in polynomial time.

Proof sketch: We show that the approximation ratio achieved in each class is O � Rc � ,
where Rc is the aspect ratio14 in class c. Due to a general proposition we prove, the
approximation ratio achieved by choosing the best class is O � ∑c Rc � . Finally, we show
that ∑c Rc

�
O � R � , by dividing this sum to two geometric series. For proving IC, we

show that the given payments are indeed the critical values for the agents, i.e. the
smallest declarations for which they still win. �

4.2 Mechanisms for Axis-Aligned Rectangles

In the full version of this paper ([2]) we present an allocation algorithm, called the
Shifting Algorithm, which is based on an algorithm by Khanna et al.([8]) with some
minor changes. They studied a model where axis-aligned rectangles lie in an n � n
array, and they proved an O � log � n ��� -approximation for the weighted packing problem.
This approximation is the best approximation currently known for weighted packing of
axis-parallel rectangles. Our algorithm gives an O � log � R ��� -approximation in a slightly
more general model where the rectangles can lie in any axis-parallel location in the

13We observe that this mechanism is not IC in the USM model.
14I.e. the ratio between the maximal diameter and the minimal width of figures in this class.



plane. By carefully defining a payment scheme, we use this allocation rule for design-
ing an IC polynomial-time mechanism achieving an O � log � R ��� -approximation for the
social welfare. We call this mechanism the Shifting Mechanism and we summarize its
properties in the following theorem:15

Theorem 11 When the agents bid for axis-parallel rectangles in ℜ2 with an aspect
ratio R, the Shifting Mechanism achieves an O � log � R ��� -approximation. This mecha-
nism is individually rational and incentive compatible for the KSM model, and runs in
polynomial time.

5 Conclusion and Further Research

In this paper, we study auctions in which the agents bid for convex figures in the plane.
We present mechanisms that run in polynomial time, in which the selfish players’ best
strategy is to send their true private data to the auctioneer. We suggest using the aspect
ratio R, which measures how diverse are the dimensions of the figures, for analyzing
the economic efficiency of the mechanisms.

In the KSM model, we were able to achieve the best approximation currently known
for weighted axis-parallel rectangle packing (log � R � ) in an IC mechanism. Lehmann
et al. [10] showed that the best polynomial-time approximation for combinatorial auc-
tions (for single minded bidders) can be achieved with an IC mechanism. On the other
hand, recent results showed settings in which the optimal algorithmic approximation
ratio cannot be achieved by IC mechanisms (see, e.g., [1, 9]). Whether such gap exists
in our model is an interesting open question:

Open Problem: Can the best polynomial-time approximation schemes for packing
convex figures (general figures, rectangles, or axis-parallel rectangles) be implemented
by incentive-compatible mechanisms?

The mechanism for combinatorial auctions presented in [10] achieves the same ap-
proximation both for the USM model and the KSM model. Our results might indicate
that, in our model, a gap exists between the approximation achievable in both infor-
mation models. For general convex figures, the approximation we achieve in the KSM

and the USM models are O � R � and O � R 4
3 � , respectively. For axis-parallel rectangles,

the gap in our results is even exponential.
Open Problem: In settings where the agents are “single minded”, is there a gap

between the best approximation achievable in the KSM and in the USM models?
We present some novel algorithmic results regarding packing of convex figures and

arbitrary rectangles. We have not been able to show that these results are tight.
Open Problem: Is there an o � R � -approximation scheme for packing general con-

vex figures, or even for packing rectangles (not necessarily axis-parallel)?
Our results may also be useful in deriving approximation results for the problem of

packing weighted convex bodies in dimensions higher than two16.
15An easy observation is that the Shifting Mechanism is not IC in the USM model. We also note that the

Shifting Mechanism achieves an Ω
=
R > -approximation for general rectangles (not necessarily axis-parallel).

16However, the economic interpretation of such auctions is not always clear.



References

[1] A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In
symposium on foundations of computer science, pages 482–491, 2001.

[2] M. Babaioff and L. Blumrosen. Computationally-feasible truthful auctions for
convex bundles. Full version. Available from www.cs.huji.ac.il/˜liad or ˜mosheb.

[3] M. Babaioff and W. E. Walsh. Incentive-compatible, budget-balanced, yet highly
efficient auctions for supply chain formation. In ACM Conference on Electronic
Commerce, pages 64–75, 2003. Extended version to appear in DSS, 2004.

[4] T. M. Chan. Polynomial-time approximation schemes for packing and piercing
fat objects. In J. Algorithms, volume 46, pages 209–218, 2003.

[5] T. Erlebacj, K. Jansen, and E. Seidel. Polynomial-time approximation schemes
for geometric graphs. In SODA 2001, pages 671–679.

[6] Papadimitriou C. H. Algorithms, games, and the internet. In proceedings of the
33rd Annual ACM Symposium on Theory of Computing, pages 749–753, 2001.

[7] D. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. In Journal of the ACM, pages 130–136,
1985.

[8] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle
tiling and packing. In Symposium on Discrete Algorithms, pages 384–393, 1998.

[9] Ron Lavi, Ahuva Mua’lem, and Noam Nisan. Towards a characterization of truth-
ful combinatorial auctions. In FOCS 03, pages 574–583, 2003.

[10] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approxi-
mately efficient combinatorial auctions. Journal of the ACM, 49(5):1–26, 2002.

[11] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic
Theory. Oxford University Press, New York, 1995.

[12] Ahuva Mua’lem and Noam Nisan. Truthful approximation mechanisms for re-
stricted combinatorial auctions. In AAAI-02, 2002.

[13] Noam Nisan. Algorithms for selfish agents. In 16th Symposium on Theoretical
Aspects of Computer Science, 1999.

[14] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Eco-
nomic Behavior, 35(1/2):166–196, April/May 2001.
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