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We consider a dynamic auction model, where bidders sequentially arrive to the market. The values of the
bidders for the item for sale are independently drawn from a distribution, but this distribution is unknown
to the seller. The seller offers a personalized take-it-or-leave-it price for each arriving bidder and aims
to maximize revenue. We study how well can such sequential posted-price mechanisms approximate the
optimal revenue that would be achieved if the distribution was known to the seller. On the negative side,
we show that sequential posted-price mechanisms cannot guarantee a constant fraction of this revenue
when the class of candidate distributions is unrestricted. We show that this impossibility holds even for
randomized mechanisms and even if the set of possible distributions is very small or when the seller
has a prior distribution over the candidate distributions. On the positive side, we devise a simple posted-
price mechanism that guarantees a constant fraction of the known-distribution revenue when all candidate
distributions exhibit the monotone hazard rate property.
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1. INTRODUCTION

Two extreme points of view are prevalent in the literature regarding the distributional
knowledge of sellers in markets. In traditional Bayesian models, players have accurate
distributional beliefs about the uncertain information. This assumption is problematic
in many practical mechanism design settings, as collecting the distributional data may
be constrained by technical or operational reasons and also by the fact that these
data are elicited from market participants that may act strategically also during this
preliminary phase of the mechanism. On the other hand, in the worst-case approach
to mechanism design (also known as detail-free or prior-free mechanism design), the
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preferences of the players are assumed to be arbitrary, and the analysis compares
the performance of the mechanism on a worst-case instance to a carefully crafted
benchmark. In reality, however, worst-case instances are rarely representative of the
real-world performance of a mechanism. Moreover, with no clear notion of optimal
auction in a prior-free setting, benchmarks are often controversial and yield worst-case
approximation ratios that are often disappointing, even for the best auctions.

In this article, we consider a framework that bridges worst-case and Bayesian mod-
els. This is done in the spirit of work like that by Bulow and Klemperer [1996] and
some recent work in computer science (see Hartline and Roughgarden [2008] and
Dhangwatnotai et al. [2010]). In this framework, we study environments where the
preferences of the customers are drawn from a distribution, but this distribution is
unknown to the seller, and learning any information about this distribution is an inte-
gral part of the mechanism. Our goal is to design detail-free mechanisms, in the sense
attributed to Wilson [1989], where, despite the lack of distributional knowledge, they
perform well compared to the best Bayesian mechanism that knows the distribution.
In this article, we consider such mechanisms in a dynamic (“online”) setting with the
following additional restriction: The mechanisms must use posted prices. In contrast to
traditional direct-revelation mechanisms, posted-price mechanisms interact with bid-
ders by offering each one of them a single take-it-or-leave-it offer so bidders do not need
to reveal their exact private value.

We consider a dynamic single-item auction model. A seller is trying to sell a single
good to a set of n bidders. The bidders arrive sequentially to the market, in an order
they cannot influence, and the seller interacts with each bidder before observing future
bidders. The auction terminates once the item is sold to one of the bidders, but in case
the bidder does not buy the item, she leaves the market and never returns. Each bidder
i has a private value vi for the item, and all values are independently drawn from the
same distribution F. The distribution F is unknown to the seller, but the seller knows
that F belongs to a known family of distributions F , each with support in [1, h] for
some h > 1 known to the seller. The seller aims to maximize revenue.

When distributions are unknown, optimal mechanisms would typically run a sam-
pling (“market research”) phase and determine future prices according to the gleaned
empirical distribution. However, asking the bidders to report their exact willingness
to pay is unnatural in many practical cases. Consider, for instance, an online travel
agency (e.g., Expedia.com or Orbitz.com) trying to sell an airline ticket to a sequence
of bidders; the agency typically offers a price to each arriving customer and observes
if customers accept or reject prices, but bidders are not expected to reveal the values
they would have agreed to pay. Bidders may prefer revealing minimal information on
their values if they plan to participate in similar markets in the future, and this holds
especially for bidders who have no real chance of winning. This article tries to explore
whether the seller can learn “effectively” even when bidders only accept or reject offers
without revealing exact values.

This article therefore considers the family of posted-price mechanisms. In such mech-
anisms, the seller offers a take-it-or-leave-it price to each bidder in his turn, and the
bidder either accepts or rejects the offer without reporting the actual willingness to
pay. If he accepts the offer, then he wins the item and the auction ends; otherwise, he
leaves the market for good and the seller waits for the next bidder to come. In some
circumstances, the seller might learn details about the underlying distribution; for ex-
ample, after a series of high prices had been rejected, then some distributions in F may
be more likely to be the actual distribution than others. However, since the auction is
terminated with the first “accept,” this learning ability is clearly very limited.

In this article, we would like to measure how much revenue can be obtained using
sequential posted-price mechanisms with unknown distributions. We compare this
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revenue to the optimal expected revenue achievable in a dynamic mechanism when
the distribution F is known to the seller, and we denote this revenue by Ron(F).1

When considering existing positive results regarding the power of posted-price
mechanisms (e.g., Blumrosen and Holenstein [2008], Chawla et al. [2010], and
Adamczyk et al. [2015]), one might hope that posted prices can work reasonably
well even with unknown distributions. Nonetheless, our first main result is negative
and shows that posted-price mechanisms can only obtain a diminishing fraction of
Ron(F).

For a benchmark B, we say that a mechanism M achieves a β-approximation if for
every possible input it obtains at least 1/β fraction of the benchmark B.

THEOREM. When F contains all possible distributions with a support in [1, h], no
deterministic sequential posted-price mechanism guarantees better than a �( log h

log log h)-
approximation to Ron(F).

We show that this impossibility result is nearly tight, as there is a simple, determin-
istic posted-price mechanism that achieves a O(log h)-approximation to this revenue
benchmark.

Our results are given for every number of bidders n and are parametrized by h (the
ratio between the highest possible value and the lowest one, where we normalize the
lowest possible value to 1). Note that if h was a small constant, then a constant-factor
approximation would be possible by simply posting the price of 1. An interesting aspect
of our results is the tradeoff between n and h. It is quite intuitive that when n is
very small with respect to h, then without any distributional knowledge only a small
fraction of the optimal revenue can be achieved (a small number of offers are spread
in a large interval, and thus it is inevitable that some bidders with high value will
accept a much lower offer). Our impossibility results become more interesting and
more difficult when n is large, where we still show that good approximation ratio is
impossible.

The above theorem is proved by constructing a hard instance composed of a relatively
small set of about log h

log log h different distributions. We show that every sequence of prices
must achieve poor revenue for at least one of these distributions.

We next consider randomized mechanisms and show that they also cannot achieve
good approximations.

THEOREM. When F contains all possible distributions with a support in [1, h], no
randomized sequential posted-price mechanism guarantees better than a �(log log h)-
approximation to Ron(F). Moreover, when n >

log h
log log h the bound improves to �( log h

log log h).

To prove the theorem, we first prove the same bounds for deterministic mechanisms
that are given a Bayesian prior over the family of distributions and then use Yao’s min-
max principle. Specifically, we present a distribution g over a family of distributions F
and show that any deterministic mechanism cannot achieve such approximations in
expectation over the prior g on the family of distributions F .

As the above hardness results show, one must restrict the set of possible distri-
butions for obtaining positive results in our model. In our main positive result, we
construct a mechanism that guarantees a constant fraction of the known-distribution

1One may also wish to compare this revenue to the optimal revenue in the setting where all bidders are
simultaneously present in the market. However, it is known that this revenue and Ron(F) differ by at most
a small constant factor, and therefore our result applies to this benchmark as well: When the distribution
is known, sequential posted-price mechanisms achieve for standard (Myerson-regular) distributions at least
78% of the optimal (Myerson) revenue in large markets ([Blumrosen and Holenstein 2008]) and at least half
of the Myerson revenue when multiple items are for sale ([Chawla et al. 2010]).
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Fig. 1. The table summarizes the main results of this article. For each result, we mention if the result
is given for deterministic or randomized mechanisms. We also point to the sections where the results are
formally stated and proven.

revenue when all candidate distributions have monotone hazard rate2 (that is, f (x)
1−F(x) is

non-decreasing, where f is the density function of F). For this approximation result, we
require that n will be large enough with respect to log h, and their ratio will affect the
approximation we obtain. For instance, the theorem shows that when

√
n > log h, our

mechanism achieves at least 1
4e

∼= 9% of the revenue achieved when the distribution is
known. In general,

THEOREM. Assume that nε > log h for some constant 0 < ε < 1. Then, there exists
a deterministic mechanism that achieves a 2e

1−ε
-approximation to Ron(F), when all the

distributions in F satisfy the monotone hazard-rate condition.

Our proposed mechanism is simple, while its analysis is more involved. We define
log h price levels, h/2, h/4, h/8 , . . . , h/2i , . . . , 2, 1, and offer each one of them to n

log h
bidders (from highest price level to lowest). The requirement that n is large enough
with respect to log h is necessary, as we show that no deterministic mechanism can
achieve an approximation ratio better than h1/n, even for point distributions (which
trivially satisfy the monotone hazard rate condition), thus constant approximation is
impossible with n small relative to log h. Our results are summarized in Figure 1.

Related Work: The two main features of our model are the use of sequential posted
prices and the lack of distributional knowledge. There is a recent line of research study-
ing posted-price mechanisms with known priors. Blumrosen and Holenstein [2008]
studied posted-price mechanisms with known distributions, both both static and dy-
namic environments, computed their exact revenue, and compared it to the optimal
(Myerson) revenue. Chawla et al. [2010] studies sequential posted pricing with known
distributions in more general models (matroid-based allocation rules and other multi-
dimensional settings) and presented several constant approximations to the optimal
revenue. A polynomial-time approximation mechanism for a seller that sells multiple
copies with a known prior was given by Chakraborty et al. [2010]. It was shown re-
cently (e.g., Feldman et al. [2015]) that posted prices can achieve good approximation
for combinatorial auctions as well.

Several articles in the economic literature studied markets where an underlying
distribution exists but is unknown. Rothschild [1974] integrated learning into the
strategy of a buyer who is looking for the optimal price when no distribution is known.
More recently, Gershkov and Moldovanu [2009a] studied dynamic auctions settings
where the distribution of the buyers’ preferences is unknown to the seller (but prior
over possible distributions is known). They characterized necessary and sufficient
conditions for information-theoretic optimum to be implementable in equilibrium.

2The non-decreasing hazard rate condition is standard in mechanism design (see, for example, Krishna
[2002] and in recent computer-science work of Chawla et al. [2007] and Hartline and Roughgarden [2008]).
It is satisfied by many natural distributions, including the exponential, uniform, and binomial distributions.
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Gershkov and Moldovanu [2009a] did not study the magnitude of inefficiency in
this setting, and in this sense our work complements their work. In subsequent
work, Gershkov and Moldovanu [2009b] characterized the second-best solution (that
maximizes efficiency under the incentive and information constraints) and showed
that the optimal mechanism is deterministic. A similar model was studied by Wang and
Chen [1999]; in their work, values are drawn from one of two possible distributions.
They showed a sufficient condition (called hazard-rate dominance) for which the
optimal posted prices are declining over time. A recent follow-up work to our article
[Babaioff et al. 2012, 2015] extended our setting to multi-unit environments and
showed mechanisms that achieve nearly tight approximate revenue as a function of
the number of units and the number of buyers. Balcan et al. [2008] present revenue
approximation results by online item pricing mechanisms for buyers with complex
adversarial preferences. The lower bounds in Balcan et al. [2008] rely on the complex
preference structure and thus do not apply in our simple model; their positive results
are distribution free but degrade in n, while we achieve a constant approximation by
assuming monotone hazard rate (MHR) prior distributions.3

We proceed as follows. Section 2 briefly presents some definitions and notations.
Section 3 describes our main impossibility result for deterministic mechanisms, and in
Section 4 we extend this result to randomized mechanisms. Finally, in Section 5, we
present a positive result for monotone hazard rate distributions.

2. PRELIMINARIES

We consider a model where a seller has one item for sale, and the seller’s value (op-
portunity cost) for the item is 0. A set of n bidders arrive sequentially, and we index
them by the order of their arrival (Bidder 1 arrives first, then Bidder 2, etc.). Bidder i
arrives at period i and leaves the market for good before the next bidder arrives. Each
agent i has a private value vi for the item. There is a publicly known h ≥ 1 such that
for every 1 ≤ i ≤ n, it holds that vi ∈ [1, h]. The n values (v1, . . . , vn) are sampled i.i.d.
from a distribution F ∈ F .4 Given a distribution F, we use the following notation.

—W(F) denotes the maximum expected social welfare where bidders’ values are drawn
i.i.d. from F, that is, Ev∼Fn[maxn

i=1{vi}].

3Our article is also related to the work on Prophet Inequalities. Classic work (see Krengel and Sucheston.
[1978] and Samuel-Cahn [1984]) showed stopping rules for values that arrive online and are drawn from
independent (possibly non-identical) distributions. The connection to online auctions was made by Hajiaghayi
et al. [Kleinberg and Sandholm 2007], and this connection was later generalized (see Kleinberg and Weinberg
[2012] and Azar et al. [2014]). In particular, Azar et al. [2014] studied models where the seller does not know
the underlying distribution of the buyers but it can use few samples from this distribution. Several recent
articles (e.g., Babaioff et al. [2009] and Babaioff et al. [2007]) studied versions of the secretary problem,
where an adversary fixes values that arrive in a random order, and stopping rules should be designed. We
note that with i.i.d. samples (i.e., taken from identical and independent distributions), any order of values
is equally likely, and thus the secretary model is weaker than our model (formally, this holds for continuous
distributions where ties occur with probability zero) in the sense that any positive result for the secretary
problem can be applied to our model, and any hardness result to the unknown i.i.d. distribution model holds
for the secretary model. In the context of secretary problems, our article studies stopping rules that are
based on a threshold-based decisions at each stage, without observing the exact value of each secretary.
4While the assumption of identical distributions is strong, we note that if we assumed arbitrary non-identical
distributions for the bidders that would yield very negative results. In this case, the assumption that the
distributions are not known is at least as strong as assuming adversarial input (each agent sampled from its
own point distribution). Clearly, deterministic mechanisms cannot achieve any reasonable approximation
(better than h) for such inputs. Moreover, we show via a simple proof in Claim A.1 (in Appendix A.1) that
randomized mechanisms cannot achieve a factor better than �(log h/ log log h). As both lower bounds are
based on point distributions, which trivially have MHR, we observe that adding the MHR assumption with
unrestricted non-identical distributions does not make a reasonable upper bound possible. Given these
negative results, in this article we add the natural assumption that all agents distributions are identical.
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—Given a list of posted prices p = (p1, . . . , pn), let RM(F) be the expected revenue
obtained in a posted-price mechanism M that offers a price pi to the ith arriving
bidder with value vi, sampled from F (if the item was not sold in previous periods).
The price vector p is implicit in this notation but it will be clear from the context
when used.

—Let Ron(F) be the optimal expected revenue in a dynamic posted-price mechanism
when the distribution F is known to the seller, that is,

Ron(F) = maxM|M posts prices p∈Rn RM(F).

Remark 2.1. Since the values are drawn i.i.d., the revenue in any posted-price
mechanism is dominated by another mechanism for which p1 ≥ p2 ≥ · · · ≥ pn, that is,
with decreasing posted prices. We therefore implicitly assume in the proofs of some of
our hardness results that prices are decreasing.

3. AN IMPOSSIBILITY RESULT FOR DETERMINISTIC MECHANISMS

In this section, we show that sequential posted-price mechanisms cannot obtain a good
revenue approximation when the distribution on the bidders’ preferences is unknown
and unrestricted. We show that every posted-price mechanisms can guarantee at most
a fraction proportional to log log h/ log h of the optimal revenue that is obtained by
dynamic mechanisms with a known distribution (Ron(F)). We now present our main
impossibility result.

THEOREM 3.1. When F contains all the distributions over [1, h], every deterministic
posted-price mechanism obtains a revenue approximation of no better than �( log h

log log h)
for some F ∈ F .

In other words, there is a constant c such that for every deterministic posted-price
mechanism there exists a distribution F such that RM(F)

Ron(F) < c · log log h
log h .

Let α = log h
log log h. To prove the theorem we define the following finite family Fα of

distributions with support in [1, h]. For every index j, we define the distribution Fj as
follows: Pr[x = 1] = 1 − j/n and Pr[x = αi] = 1/n for 1 ≤ i ≤ j. Let Fα be the family
of distributions that includes every such distribution Fj with support in [1, h]. Since
α = log h

log log h, the size of Fα must be approximately α as the following simple observation
shows (proof appears in Appendix A.2).

OBSERVATION 3.2. For the above set of distributions Fα, and for large-enough h, we
have that α − 1 ≤ |Fα| ≤ 2α.

Before presenting the formal proof we briefly sketch the outline of the proof. If a
mechanism knew which one of the Fj is the true distribution, then it could easily obtain
revenue of about α j (this is shown in Lemma 3.3 below). Let rj denote the maximal
number of times that a price α j is offered to bidders by some mechanism; We show
that the overall revenue is at most α j O( rj

n ) if the true distribution is Fj (Lemma 3.4
below). However, as we only offer n prices and there are α relevant price levels, one of
the prices must be offered at most n/α times so the mechanism achieves revenue of at
most α j−1 for some distribution—and this revenue is a factor α away from α j .

We first show that if Fj is known, then high expected revenue can be achieved by
online mechanisms, that is, we show that Ron(Fj) is proportional to α j .

LEMMA 3.3. For any distribution Fj ∈ Fα it holds that

α j ≥ Ron(Fj) ≥ (1 − e−1)α j . (1)
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PROOF. The maximal value that can be sampled from Fj is α j , thus α j ≥ Ron(Fj).
Ron(Fj) is the optimal online mechanism when it is known that the distribution is Fj .
This mechanism has revenue at least as high as the mechanism that fixes a constant
price of α j for all agents. Such a mechanism will get a revenue of α j whenever at least
one value of α j was sampled by one of the n agents. This happens with probability of
at least 1 − (1 − 1/n)n ≤ 1 − e−1.

We want to show that no posted-price mechanism can approximate this revenue, and
thus we bound the revenue of any mechanism from below. We first bound the revenue
obtained on Fj as a function of rj , the number of times the mechanism posts a price
in [α j−1, α j]. In the rest of the proof, we will use the notation k0 = �α	. A proof can be
found in Appendix A.2.1.

LEMMA 3.4. Assume that n > 4α, and consider a deterministic posted-price mechanism
that posts a price in [α j−1, α j] for rj times. Assume that rj ≤ n−k0

2 . For distribution Fj, it
holds that

RM(Fj) ≤ α j ·
(

2
α

+ 4e · rj

n

)
.

Using the above machinery, we can now complete the proof of Theorem 3.1.

PROOF (OF THEOREM 3.1). We assume that n > 4α = 4 log h
log log h; otherwise, we can

invoke Proposition 3.6 from Section 3.2 that claims that no deterministic posted-price
mechanism can achieve a better approximation than h

1
n , which is �(log h) when n <

4 log h
log log h.
By Observation 3.2, there are at least α − 1 > α/2 distributions in Fα. This implies

that for at least one j it holds that rj < 2n
α

.
For h large enough,5 we have that 4/α < 1/2. As rj ≤ 2

α
· n, n > 4α and k0 ≤ 2α it

holds that

2rj + k0 ≤ 4
α

· n + 2α ≤ 1
2

· n + n
2

= n.

This implies that rj ≤ n−k0
2 . We can thus use Lemma 3.4 for distribution Fj to show

that as rj

n ≤ 2
α

we have

RM(Fj) ≤ α j ·
(

2
α

+ 4e · rj

n

)

≤ α j ·
(

2
α

+ 4e · 2
α

)

= α j · 8e + 2
α

< 24α j−1. (2)

By Lemma 3.3, Ron(Fj) ≥ (1 − e−1)α j . Taken together with Equation (2), we have the
following:

RM(Fj) · α · 1 − e−1

24
< Ron(Fj),

which concludes the proof of the theorem.

5Note that the �(·) notation in the theorem implies that the inapproximability result holds for large-enough
h’s.
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3.1. A Simple Positive Result

We now show that Theorem 3.1 is nearly tight, as a logarithmic approximation can be
achieved by a simple deterministic mechanism. We note that a logarithmic approxima-
tion can also be achieved by a single-price randomized mechanism as in Balcan et al.
[2008] (the result in Balcan et al. [2008] holds for more general settings as well). For
completeness, we present the randomized mechanism for our setting below.

For a vector of realized values v = (v1, v2, . . . , vn), we define the realized social welfare
to be W(v) = maxn

i=1{vi} and the realized revenue of mechanism M by RM(v). With these
notations, we present the following proposition. Note that if a mechanism obtains
expected revenue that approximates the optimal social welfare, then it obtains at least
the same approximation factor to any revenue benchmark, as bidders never pay more
than their value.

PROPOSITION 3.5. There exists a deterministic mechanism M that achieves a 4 log h-
approximation to the optimal expected social welfare when n ≥ log h, that is, W (F)

RM(F) ≤
4 log h for every distribution F.

In addition, from Balcan et al. [2008], there exists a randomized posted-price mech-
anism M that achieves revenue that is a 2 log h-approximation to the realized social
welfare, that is, W (v)

RM(v) ≤ 2 log h for every vector v ∈ [1, h]n.

PROOF The deterministic mechanism is as follows.
(Equal-Sample-of-Every-Scale Mechanism:)
The mechanism offers the price h/2i to 
n/(log h)� agents, for every i ∈ {1, . . . , log h} in
that order.

Note that 
n/ log h� ≥ max{1, n/(2 log h)} as n ≥ log h. Thus, with probability at least
1/2 log h the maximal value sampled from the distribution faces a price that is at least
half the value, and the approximation follows.6

A randomized mechanism: Choose a price p a random from the set {2 j}, where
j ∈ {1, . . . , log h} and set pi = p for all i. If vmax is the maximal value, then with
probability 1/ log h the price p ∈ [vmax/2, vmax] and the approximation follows.

3.2. A Simple Impossibility Result

When the number of bidders n is small, the offered prices are sparsely scattered on the
support and therefore a bad approximation is unavoidable for some singleton distribu-
tions. The following proposition allows us not to handle cases where n is small when
proving our main results.

PROPOSITION 3.6. When F contains all possible point distributions over [1, h], no
deterministic posted-price mechanism obtains better than a h1/n-approximation to the
optimal revenue achievable with a known distribution; that is, for any ε > 0, there exists
a distribution F ∈ F such that

Ron(F)
RM(F)

> h1/n − ε. (3)

PROOF. Let p1 ≥ p2 ≥ · · · ≥ pn be the posted prices published by the mechanism.
We first observe that we must have that pn = 1, otherwise, if the whole mass of the
distribution is on 1+ ε < pn, then the approximation ratio will be unbounded. A second

6We note that the above randomized mechanism has an advantage from a strategic point of view, as bidders
have no reason to act strategically with respect to their arrival time as the price never changes. The
deterministic mechanism, on the other hand, does not admit this property as it offers a decreasing sequence
of prices.
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observation is that the ratio between some pair of consecutive prices must be at least
h

1
n ; otherwise,

h = h
p1

· p1

p2
· p2

p3
· · · pn−1

pn
< (h

1
n )n = h. (4)

Let pi−1, pi be prices such that pi−1
pi

≥ h
1
n . If the whole mass of the distribution lies on

pi−1 − ε, then our posted-price mechanism obtains revenue of pi where a seller who is
knowledgable about the true distribution can gain pi−1 − ε. Overall, the approximation
obtained is at least pi−1−ε

pi
≥ h

1
n − ε.

4. PRIORS OVER DISTRIBUTIONS AND RANDOMIZED MECHANISMS

In this section, we extend the impossibility result presented in Theorem 3.1 to mech-
anisms in which bidders are offered random prices. For that, we first prove the lim-
itations of deterministic mechanisms in the case where there is a prior distribution
over the candidate distributions. We then use Yao’s min-max principle to conclude our
result for randomized mechanisms.

Let F be a family of distributions, and let g be a prior over F . Define Ron(g) to
be the expected revenue (over g) of the optimal online mechanism that knows which
distribution F ∈ F was realized. Define RM(g) to be the expected revenue (over g) of
the mechanism M that knows F but does not know which distribution F ∈ F was
realized. We show that the best online posted-price mechanism that does not know
which distribution was realized has much smaller expected revenue.

THEOREM 4.1. No deterministic posted-price mechanism obtains a constant expected
revenue approximation (over g). Specifically, no such mechanism achieves an approxi-
mation better than

—�(log h/ log log h) when n > 4α.
—�(log log h) when n ≤ 4α.

The hardness result can be read as follows: There exists a constant c > 0, F , and a
prior g over F , such that for every deterministic posted-price mechanism M it holds
that

Ron(g)
RM(g)

> c · log h
log log h

,

when n > 4α (the right-hand side is c · log log h when n ≤ 4α).
The case n ≤ 4α is proved in Proposition A.4 in the Appendix. We now present the

proof for n > 4α.
We define g to be a distribution over the “hard family of distributions” Fα (presented

in the beginning of Section 3) that picks Fj with probability proportional to 1/α j .
Formally, let w j = 1/α j and let σ = ∑

j:Fj∈Fα
w j . The distribution Fj is drawn with

probability Pr[F = Fj] = w j/σ .
The theorem directly follows from the two lemmas below. The first lemma shows that

if the realization of the actual distribution was known to the seller, then an expected
revenue of roughly log h

log log h could be achieved. The second lemma shows that if the seller
does not know the realization of the distribution but only knows the prior g from which
it is drawn, then no posted-price mechanism can gain more than a constant expected
revenue.

LEMMA 4.2. Let g be the prior overFα defined above. It holds that Ron(g) = 1
σ
·�( log h

log log h).
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13:10 M. Babaioff et al.

PROOF. By Lemma 3.3, for Fj ∈ Fα, it holds that Ron(Fj) ≥ (1 − e−1)α j . Thus,
each Fj contributed at least (1 − e−1)α j · w j/σ = (1 − e−1)σ to the expectation, and as
by Observation 3.2 Fα consists of �( log h

log log h) distributions, we conclude that Ron(g) =
1
σ

· �( log h
log log h).

The proof of the following lemma can be found at Appendix A.3.

LEMMA 4.3. Assume that n > 4α. Let g be the prior over Fα defined above. For any
deterministic posted-price mechanism M, it holds that RM(g) = 1

σ
· O(1).

Using Yao’s min-max lemma, we conclude that randomized mechanisms cannot
achieve good approximation on an adversarially chosen distribution. We note that this
bound is almost tight, as we showed (Proposition 3.5) a simple mechanism that obtains
an O(log h)-approximation. Therefore, the following corollary strengthens Theorem 3.1
for randomized mechanisms.

COROLLARY 4.4. When F contains all the distributions over [1, h], every randomized
mechanism has revenue approximation of no better than �(log h/ log log h) when n > 4α
(or �(log log h) when n ≤ 4α); that is, there exists a constant c > 0 such that for any
randomized mechanism M there exists F ∈ F such that c · log h

log log h · RM(F) < Ron(F).

5. MONOTONE HAZARD RATE DISTRIBUTIONS

In light of the impossibility results, one should restrict the class of possible distribution
for having a constant approximation to the optimal revenue. In this section, we restrict
attention to distributions that satisfy the monotone hazard rate assumption.

In this section, we assume that a density function f (x) = dF(x)/dx exists for the
underlying distribution and that this density function is always positive and differen-
tiable. We let S(x) = 1 − F(x) denote the survival probability and H(x) = f (x)/S(x)
denote the hazard rate of F. In this section, we will show a mechanism that attains a
constant approximation ratio for distributions F with H(x) monotone non-decreasing.
This MHR assumption is common in auction theory, and MHR distributions include
the most natural distributions in this setting. We emphasize that the mechanism has
no knowledge of distribution F yet achieves the claimed approximation ratio for every
F with non-decreasing hazard rate.

We consider the Equal-Sample-of-Every-Scale mechanism from Proposition 3.5. The
mechanism offers the price h/2i to 
n/(log h)� agents, for every i ∈ {1, . . . , log h} in that
order.

Despite its simplicity, our main positive result is that the Equal-Sample-of-Every-
Scale mechanism achieves a constant approximation for every monotone hazard rate
distribution (we already know from Proposition 3.5 that it achieves a log h approxima-
tion for general distributions).

THEOREM 5.1. Let log h ≤ 
nε� for ε ∈ (0, 1), and consider player valuations drawn
i.i.d. from a monotone hazard rate distribution F. Let Xn denote the first-order statistic of
nsamples from F. The expected revenue of the Equal-Sample-of-Every-Scale Mechanism
is at least

1 − ε

2e
E[Xn].

In other words, the expected revenue of the mechanism is a constant factor of the
maximum social welfare. We note that if the mechanism Equal-Sample-of-Every-Scale
used a different scale, for example, 1 + δ instead of 2, then the same analysis would
prove a bound of 1−ε

(1+δ)e E[Xn] for n such that log1+δ h ≤ nε .
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We recall that the mechanism is deterministic. It is not surprising that we need n
to be relatively large (nε > log h), as the lower bound of Proposition 3.6 (Section 3.2)
shows that without n being at least log h a constant approximation is unachievable by
deterministic mechanisms.7

First, we show that expectation of the first-order statistic Xn of an MHR distribution
F, as a function of the number of samples n, exhibits diminishing marginal returns in
a strong sense.

LEMMA 5.2. When F satisfies the monotone hazard rate condition, we have

E[Xn+1] − E[Xn]
E[Xn] − E[Xn−1]

≤ n
n + 1

.

PROOF. First, we can write E[Xn] as follows:

E[Xn] =
∫ h

x=1
(1 − Fn(x))dx

=
∫ h

x=1

1 − Fn(x)
f (x)

f (x)dx

=
∫ h

x=1

1 − F(x)
f (x)

(
n−1∑
i=0

Fi(x)

)
f (x)dx

=
∫ h

x=1

1
H(x)

(
n−1∑
i=0

Fi(x)

)
f (x)dx

=
∫ 1

F(x)=0

1
H(x)

(
n−1∑
i=0

Fi(x)

)
dF(x).

For the last inequality, note that we can write H(x) as a function of F(x), for example,
H(x) = H(F−1(F(x))), which is well defined when the cdf f is always positive.

Let �n = E[Xn+1] − E[Xn]. By the above expression for E[Xn], �n can be written as
follows:

�n =
∫ 1

F(x)=0

1
H(x)

Fn(x)dF(x),

where F is an MHR distribution, and therefore 1/H(x) is a non-increasing function of
x and therefore also of F(x). Applying Lemma A.8 in the appendix with z = F(x) and
g(z) = 1

H(F−1(z)) gives us that �n/�n−1 ≤ n
n+1 , as needed.

This allows us to bound the growth of the first-order statistic in terms of the number
of samples. Here, Hn = ∑n

i=1 1/i denotes the nth harmonic number.

LEMMA 5.3. When F satisfies the monotone hazard rate condition and for m ≤ n, it
holds that

E[Xm]
E[Xn]

≥ Hm

Hn
≥ log m

log n
.

PROOF. We show the second inequality in Lemma A.9 in the appendix. To show the
first inequality, by induction it suffices to show that E[Xn+1]/E[Xn] ≤ Hn+1/Hn for all

7We note that the lower bound of Proposition 3.6 uses point distributions, which satisfies the monotone
hazard rate assumption.
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integers n ≥ 1. Letting �0 = E[X1] and �i = E[Xi+1]− E[Xi] for i > 0, this is equivalent
to showing that ∑n

i=0 �i∑n−1
i=0 �i

≤ Hn+1

Hn
.

This, in turn, is equivalent to showing

�n∑n−1
i=0 �i

≤ Hn+1

Hn
− 1 = 1

(n + 1)Hn
.

We rewrite the above condition as follows:
n−1∑
i=0

�i

�n
≥

n∑
i=1

(n + 1)/i.

Therefore, it suffices to show that �i/�n ≥ (n + 1)/(i + 1). This can be established by
inductive application of Lemma 5.2, completing the proof.

The above lemma implies that when m ≤ n, we have that E[Xm] ≥ log m
log n E[Xn]; thus,

Pr[Xm ≥ log m
log n E[Xn]] ≥ Pr[Xm ≥ E[Xm]]. Lemma A.7 in the appendix implies that Xm

is distributed as a monotone hazard rate distribution. Moreover, a result of Barlow
and Marshall [1964] implies—as a special case—that every monotone hazard rate
distribution exceeds its expectation with a probability of at least 1/e. This gives the
following inequality:

Pr
[

Xm ≥ log m
log n

E[Xn]
]

≥ 1/e. (5)

PROOF OF THEOREM 5.1. The mechanism samples at least 
n/(log h)� bidders for
each price 2i ∈ [1, h]. The theorem assumes that log h ≤ 
nε�, which implies that

n/(log h)� ≥ n1−ε . It follows that the mechanism samples at least m = n1−ε bidders for
each price.

Let p = 2i ∈ [E[Xn](1 − ε)/2, E[Xn](1 − ε)]. The revenue of the algorithm is at least
that attained had we simply tried to sell to m players using price p, which is at least
the following:

pPr[Xm ≥ p] ≥ pPr[Xm ≥ E[Xn](1 − ε)]

= pPr
[

Xm ≥ log m
log n

E[Xn]
]

≥ p/e ≥ E[Xn](1 − ε)/2e,

where the equality holds as we have m = n1−ε , so 1 − ε = log m
log n .

6. DISCUSSION

Our article considers sequential posted-price mechanisms in environments where the
seller has uncertainty regarding the distribution of the bidders’ preferences. We show
that for general distributions no mechanism can achieve a constant approximation to
the optimal revenue. On the other hand, we show that for the class of MHR distribu-
tions, this task is achievable, as long as the market is large enough compared to the
largest possible value (otherwise, some impossibility results kick in).

We leave several interesting open questions. First, we do not prove any hardness
results for MHR valuations. In particular, there may be a mechanism that, for such
distributions, achieves an approximation ratio that approaches 1 in large markets.
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Another interesting direction is to try to obtain positive results for wider classes of
distributions, for example, regular distributions ([Myerson 1981]).

Our article focuses on the simple scenario where the seller has only one unit for sale.
An immediate question is whether our approach can be extended to multi-unit settings.
A follow-up work to our article [Babaioff et al. 2012, 2015] studied a similar setting
but with multiple copies of the item. They designed mechanisms that approximate the
optimal revenue, where the approximation factor depended on the market size n and
the number of copies. Selling multiple item enables the sellers to use more complex
learning techniques. Indeed, they showed how the seller’s pricing problem resembles
multi-arm bandit problems, and they used ideas from this literature in their analysis.

APPENDIX

A. MISSING CLAIMS AND PROOFS

A.1. Section 1

CLAIM A.1. Let α = log h/ log log h. Assume player values are drawn from unknown,
non-identical point distributions with support in [1, h]. No randomized posted-price
mechanism achieves better than a 2

α
fraction of the optimal revenue.

PROOF. A randomized posted-price mechanism chooses a (possibly random) price pi
to offer to player i, who then arrives with value vi. Observe that the distribution of
pi is independent of vi, although it may depend on {v j} j<i. We observe that this is an
adversarial setting, where an adversary may set vi depending on the distribution of pi.

We consider an adversary who tries to minimize the mechanism’s revenue in the
following manner. For each player i, choose an integer ki such that 1 ≤ αki−1 ≤ αki ≤ h
and Pr[pi ∈ [αki−1, αki ]] is minimized. By Observation A.2, this probability is upper-
bounded by 1/2α. Let vi = αki . The revenue collected by the mechanism from player i
is upper bounded by

1
2α

vi + vi

α
<

2
α

vi,

where the first term of the sum upper bounds the revenue attained when pi ∈
[αki−1, αki ], and the second term upper bounds the revenue otherwise. Summing over
all players, the total revenue of the mechanism is at most 2

α

∑
i vi. Since the player val-

uations are drawn from point distributions, the optimal revenue is
∑

i vi, completing
the proof.

A.2. Section 3

Observation 3.2 is a corollary of the following observation. Due to the definition of Fα, it
follows from the observation below that if h is large enough, then the family Fα consists
of at most 2α and at least 
α� distributions. Note that 
α� ≥ α − 1.

OBSERVATION A.2. Let α = log h
log log h. It holds that αα < h. Additionally, if h is large

enough, then h < α2α.

PROOF. We first show that αα < h, that is, ( log h
log log h)

log h
log log h < h.

The holds if log h
log log h · (log log h − log log log h) < log h, which holds, since

log log h−log log log h
log log h < 1.
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Next we show that if h is large enough, then h < α2α or, equivalently, h < ( log h
log log h)

2 log h
log log h .

This claim is true if and only if

log h <
2 log h
log log h

· (log log h − log log log h) ,

which is analogous to 2 log log log h < log log h, which clearly holds when h is large
enough.

A.2.1. Proof of Lemma 3.4. Following is the proof of Lemma 3.4.

PROOF. We need to bound RM(Fj). If the price is not in [α j−1, α j], then the revenue
of the mechanism is smaller than α j−1. Let R(v) be the revenue of the mechanism that
posts the price α j for rj times and always posts the price of 0 afterwards, when the
vector of values is v.

RM(Fj) ≤ α j−1 + E[R(v)], where E[R(v)] is the expectation of R(v).
Let Y be the number of α j in v,

E[R(v)] =
n∑

k=1

E[R(v)|Y = k] · Pr[Y = k].

We next split the sum into two terms,

E[R(v)] =
k0∑

k=1

E[R(v)|Y = k] · Pr[Y = k] +
n∑

k=k0+1

E[R(v)|Y = k] · Pr[Y = k]. (6)

We observe the following easy bound on Pr[Y = k]:

Pr[Y = k] =
(

n
k

)
n−k

(
1 − 1

n

)n−k

≤ nk

k!
· n−k · 1 ≤ 1

k!
. (7)

We can now bound the latter term of Equation (6). Clearly, E[R(v)|Y = k] ≤ α j , and
thus

n∑
k=k0+1

E[R(v)|Y = k] · Pr[Y = k] ≤ α j
n∑

k=k0+1

1
k!

≤ α j
n∑

k=k0+1

1
2k ≤ α j · 2−k0 ≤ α j

k0
. (8)

We next move to bound the first term of Equation (6). The following claim would be
useful.

CLAIM A.3. For distribution Fj it holds that

E[R(v)|Y = k] ≤ α j ·
(

1 −
(

1 − rj

n − k

)k
)

. (9)

PROOF. Let Z be the the event that in none of the rj times that the mechanism posts
the price α j , the realized value is α j ,

Pr[Z] =
(n−rj

k

)
(n

k

) =
k−1∏
i=0

(
n − rj − i

n − i

)
=

k−1∏
i=0

(
1 − rj

n − i

)
≥

(
1 − rj

n − k

)k

. (10)

Therefore,

E[R(v)|Y = k] = α j · (1 − Pr[Z]) ≤ α j ·
(

1 −
(

1 − rj

n − k

)k
)

. (11)

ACM Transactions on Economics and Computation, Vol. 5, No. 2, Article 13, Publication date: March 2017.



Posting Prices with Unknown Distributions 13:15

Recall that rj ≤ n−k0
2 . For k ≤ k0, this implies that 1

2 ≥ rj

n−k0
≥ rj

n−k . We use the fact
that for x ∈ [0, 1/2] it holds that e−2x ≤ 1 − x ≤ e−x to conclude that

1 −
(

1 − rj

n − k

)k

≤ 1 − e− 2·r j ·k
n−k ≤ 2 · rj · k

n − k
. (12)

As we assume that n > 4α and as k ≤ k0 ≤ 2α it holds that n/2 > 2α ≥ k, and thus
n − k ≥ n/2. As n − k > n/2, it holds that 2·rj ·k

n−k ≤ 4·rj ·k
n . Combining this with Claim A.3

and Equation (12), we derive that for k ≤ k0 it holds that

E[R(v)|Y = k] ≤ 4 · rj · k
n

α j .

We use this and Equation (7) to bound the first term of Equation (6),
k0∑

k=1

E[R(v)|Y = k] · Pr[Y = k]

≤
k0∑

k=1

α j · 4 · rj · k
n

· 1
k!

≤ α j · 4 · rj

n
·

k0∑
k=1

1
(k − 1)!

≤ α j · 4e · rj

n
. (13)

Combining Equations (6), (8), and (13), we conclude that

E[R(v)] ≤ α j ·
(

1
k0

+ 4e · rj

n

)
.

As RM(Fj) ≤ α j−1 + E[R(v)] and k0 ≥ α, it follows that

RM(Fj) ≤ α j−1 + E[R(v)] ≤ α j ·
(

1
α

+ 1
k0

+ 4e · rj

n

)
≤ α j ·

(
2
α

+ 4e · rj

n

)
. (14)

A.3. Section 4

PROPOSITION A.4. Let g be a prior distribution over F which is known to the seller.
When n ≤ 4α, every deterministic posted-price mechanism obtains expected revenue
approximation (over g) of no better than �(log log h).

PROOF. Let F be the set of singleton distributions on the values 2 j , for j =
{0, . . . , log h − 1}. In other words, F contains log h possible distributions, where a
distribution Fj in F selects the value 2 j with probability 1. Let σ = ∑log h−1

i=1
1
2 j (a

normalization factor). We define the prior g over F as follows: g(Fj) = 1
σ ·2 j .

A posted-price mechanism that always knows the realization Fj will post a price 2 j

and will therefore gain an expected revenue of

1
σ

log h−1∑
j=0

2 j · 1
2 j = log h

σ
. (15)

The following claims characterize the optimal posted-price mechanism for this set-
ting. A posted-price mechanism posts n prices, and the optimal offered prices will be
of the form 2 j , where j = {0, . . . , log h − 1} (if a price between such points was offered,
then increasing it to the next exponent of 2 would strictly increase revenue). We will
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denote the prices posted by a mechanism by 2 j1 , 2 j2 , . . . , 2 jn ( j1 ≤ j2 · · · ≤ jn) (although
the offers are given in decreasing order). We will first argue that the offers will be
evenly spread across the possible singleton distributions.

CLAIM A.5. Consider a posted-price mechanism M that achieves optimal expected
revenue for the above setting with prices 2 j1 , 2 j2 , . . . , 2 jn. For every i, k ∈ {0, . . . , log h−2},
we have that |( ji+1 − ji) − ( jk+1 − jk)| ≤ 1.

PROOF. We first observe that the expected payment is invariant of the actual price
and depends only on the distance from the next highest price. That is, the expected
revenue gained by the agent accepting the price 2 jk depends only on jk+1 − jk,

1
σ

jk+1−1∑
i= jk

2 jk 1
2i = 1

σ

jk+1− jk−1∑
i=0

1
2i . (16)

Now, assume that the condition does not hold and that there exist j, k such that ( ji+1−
ji) − ( jk+1 − jk) ≥ 2. We will assume that k > i (the other case is treated analogously).
We will show that, in this case, we can change the posted prices and strictly increase
revenue. Consider the mechanism M′ that posts the same prices but only shifts the
prices ji+1, . . . , jk one notch to the left, that is, instead of posting the prices 2 ji+1 , . . . , 2 jk,
it posts the prices 2 ji+1−1, . . . , 2 jk−1 (all other prices are as in the M). As observed above,
the expected revenue from each price only depends on the distance from the next price.
We thus have that the only change in revenue is caused by increasing ji+1 − ji and
decreasing jk+1 − jk. Overall, the net change in revenue is 1

σ
( 1

2 jk+1− jk
− 1

2 ji+1− ji−1 ), which is
strictly positive when ( ji+1 − ji) − ( jk+1 − jk) ≥ 2.

CLAIM A.6. All posted-price mechanisms for which the condition from Claim A.5 holds
(that is, that for every i, k ∈ {0, . . . , log h − 2}, we have that |( ji+1 − ji) − ( jk+1 − jk)| ≤ 1)
achieve the same expected revenue for the F and g defined above.

PROOF. Due to the assumption, for some k and for every i, either ji+1 − ji = k or
ji+1− ji = k+1. Let K = |{i| ji+1− ji = k+1}|, and, since there are nprices overall, K is the
same for all mechanisms satisfying the given assumption. Since the expected revenue
from each price in the mechanism depends only on the distance (in the exponent scale)
from the next highest offer, we get that every two mechanisms satisfying the constraint
obtain the same expected revenue.

Due to the above two claims, the optimal posted-price mechanism achieves an ex-
pected revenue of at least (where k = 
 log h

n �),

n
σ

k−1∑
i=0

2−i. (17)

The ratio between the optimal revenue with known distributions (Equation (15)) and
the optimal posted-price revenue is therefore

log h
n

· 1∑k−1
i=0 2−i

≥ log h
2n

> 2 log log h. (18)

The second inequality is due to the assumption that n ≤ 4α.
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Proof of Lemma 4.3:

PROOF. Let J be the set of indices j such that rj > n−k0
2 . Observe that as n > 4α and

k0 ≤ 2α for large-enough h, thus k0 < n/2, and therefore rj > n/4 for every j ∈ J. Since∑
j∈J rj ≤ n, it holds that |J| ≤ 4. For every j ∈ J, we have RM(Fj) ≤ α j · w j/σ = 1/σ ,

and thus ∑
j:Fj∈J

RM(Fj) · Pr[F = Fj] ≤ 4
σ

.

For j /∈ J, we invoke Lemma 3.4. Recall that
∑

j rj = n and that by Observation 3.2
the family F is of size at most 2α.∑

j:Fj∈F\J

RM(Fj) · Pr[F = Fj]

≤
∑

j:Fj∈F\J

α j ·
(

2
α

+ 4e · rj

n

)
· w j

σ

≤ 1
σ

·
∑

j:Fj∈F\J

·
(

2
α

+ 4e · rj

n

)

≤ 1
σ

·
⎛
⎝4 + 4e

n

∑
j:Fj∈F\J

rj

⎞
⎠

= 4(e + 1)
σ

. (19)

For the case where n > 4α, by combining the bound for j such that Fj ∈ J and for
the complimentary set, we complete the proof of this lemma,

RM(g) =
∑

j:Fj∈F
RM(Fj) · Pr[F = Fj]

=
∑

j:Fj∈J

RM(Fj) · Pr[F = Fj] +
∑

j:Fj∈F\J

RM(Fj) · Pr[F = Fj]

≤ 4(e + 2)
σ

. (20)

A.4. Section 5

First, we will show that the first-order statistic of n i.i.d. samples from F is also an
MHR distribution.

LEMMA A.7. Let Fn be the distribution of the first-order statistic of n i.i.d. samples from
a distribution F. If F has a non-decreasing hazard rate, then Fn has a non-decreasing
hazard rate.

PROOF. Our notation is no accident: It is easy to see that Fn(x) is indeed the cumula-
tive distribution of the first-order statistic of n i.i.d. samples from F. Let fn denote the
density function and Hn denote the hazard rate function of Fn. We can differentiate
Fn(x) to get

fn(x) = nFn−1(x) f (x).
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We can now write and manipulate the hazard rate as follows:

Hn(x) = nFn−1(x) f (x)
1 − Fn(x)

= n
(

f (x)
1 − F(x)

) (
Fn−1(x)∑n−1
i=0 Fi(x)

)
= nH(x)

(
Fn−1(x)∑n−1
i=0 Fi(x)

)
.

Note that H(x) and F(x) are non-decreasing. Therefore, by the above expression, in
order to show that Hn(x) is non-decreasing it suffices to show that g(y) = yn−1/

∑n−1
i=0 yi

is non-decreasing in y. To show this, we take α ≥ 1 and observe that g(αy) =
αn−1yn−1/

∑n−1
i=0 αi yi ≥ αn−1yn−1/

∑n−1
i=0 αn−1yi = g(y).

Now, we show a bound on the integral of the product of a monomial and a non-
increasing function that will prove useful.

LEMMA A.8. Let g : [0, 1] → R>0 be a non-increasing, differentiable function. For all
integers n ≥ 1 we have ∫ 1

z=0 g(z)zndz∫ 1
z=0 g(z)zn−1dz

≤ n
n + 1

.

PROOF. Let αn = ∫ 1
z=0 g(z)zndz. We can integrate by parts using the rule

∫
udv =

uv − ∫
vdu and setting dv = zndz and u = g(z) to get

αn =
[

g(z)
zn+1

n + 1

]1

z=0
−

∫ 1

z=0

zn+1

n + 1
g′(z)dz

= g(1)
n + 1

−
∫ 1

z=0

zn+1

n + 1
g′(z)dz.

To complete the proof, it suffices to show that (n + 1)αn ≤ nαn−1

nαn−1 − (n + 1)αn

=
∫ 1

z=0
(zn+1 − zn)g′(z)dz ≥ 0,

where the inequality follows from the fact that g′(z) ≤ 0 and zn+1−zn ≤ 0. This completes
the proof.

Finally, we bound the ratio of two harmonic numbers in terms of the natural loga-
rithm. Here we use Hn to denote the nth harmonic number.

LEMMA A.9. For m ≤ n, Hm
Hn

≥ log m
log n .

PROOF. Let δn = Hn − log n. It is known that δn is non-negative; for completeness we
prove it here,

δn =
n∑

i=1

1
i

−
∫ n

x=1

1
x

dx ≥
n−1∑
i=1

(
1
i

−
∫ i+1

x=i

1
x

dx

)
≥

n−1∑
i=1

(
1
i

−
∫ i+1

x=i

1
i

dx

)
= 0.
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Next, we prove that δn is a decreasing sequence,

δn − δn+1 = (Hn − log n) − (Hn+1 − log(n + 1))

= (log(n + 1) − log n) − 1
n + 1

=
∫ n+1

x=n

1
x

dx − 1
n + 1

>

∫ n+1

x=n

1
n + 1

dx − 1
n + 1

= 0.

Now we are ready to complete the proof,

Hm

Hn
= log m+ δm

log n + δn
=

(1 + δm
log m) log m

(1 + δn
log n) log n

≥
(1 + δn

log n) log m

(1 + δn
log n) log n

= log m
log n

.

The last inequality follows from δm ≥ δn ≥ 0 and log n ≥ log m ≥ 0.

REFERENCES

Marek Adamczyk, Allan Borodin, Diodato Ferraioli, Bart de Keijzer, and Stefano Leonardi. 2015. Sequential
posted price mechanisms with correlated valuations. In Proceedings of the Web and Internet Economics:
11th International Conference (WINE’15). Evangelos Markakis and Guido Schäfer (Eds.). Springer,
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